2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年吉林省白山市高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等2.若變量x,y滿足約束條件,則目標(biāo)函數(shù)最大值為()A.1 B.-5C.-2 D.-73.已知三棱錐O—ABC,點(diǎn)M,N分別為線段AB,OC的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.4.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.15.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.6.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.10507.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或8.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.9.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.10.過點(diǎn),且斜率為2的直線方程是A. B.C. D.11.如果,那么下面一定成立的是()A. B.C. D.12.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓所截得的弦的長為_____14.已知,為橢圓C的焦點(diǎn),點(diǎn)P在橢圓C上,,則的面積為___________.15.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________16.設(shè)變量x,y滿足約束條件則的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在直線上,且過點(diǎn),(1)求圓C的方程;(2)若圓C與直線交于A,B兩點(diǎn),______,求m的值從下列三個條件中任選一個補(bǔ)充在上面問題中并作答:條件①:;條件②:圓上一點(diǎn)P到直線的最大距離為;條件③:18.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且,是的中點(diǎn)(1)求證:平面;(2)求異面直線與所成的角的余弦值19.(12分)某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進(jìn)行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):單價(元)1819202122銷量(冊)6156504845(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?附:,,,.20.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,若對恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓()與橢圓的焦點(diǎn)相同,且橢圓C過點(diǎn)(1)求橢圓C的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點(diǎn)A,B,且,(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,說明理由;(3)P是橢圓C上異于上頂點(diǎn),下頂點(diǎn)的任一點(diǎn),直線,,分別交x軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值22.(10分)已知橢圓:,是坐標(biāo)原點(diǎn),,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點(diǎn),且直線,,的斜率之和為0(其中為坐標(biāo)原點(diǎn))①求證:直線經(jīng)過定點(diǎn),并求出定點(diǎn)坐標(biāo):②求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C2、A【解析】作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可【詳解】解:由得作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當(dāng)直線,過點(diǎn)時取得最大值,由,解得,所以代入目標(biāo)函數(shù),得,故選:A3、A【解析】利用空間向量基本定理進(jìn)行計算.【詳解】.故選:A4、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項公式和求和公式進(jìn)行求解.【詳解】設(shè)這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.5、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點(diǎn)睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.6、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C7、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時,表示焦點(diǎn)在軸上的橢圓,此時;當(dāng)時,表示焦點(diǎn)在軸上的雙曲線,此時.故選:C.8、B【解析】根據(jù)基本不等式進(jìn)行求解即可.【詳解】因?yàn)檎龜?shù)x,y,所以,當(dāng)且僅當(dāng)時取等號,即時,取等號,而,所以解得,故選:B9、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項:對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題10、A【解析】由直線點(diǎn)斜式計算出直線方程.【詳解】因?yàn)橹本€過點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡單.11、C【解析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項計算,即可求解.【詳解】對于A中,當(dāng)時,,所以不正確;對于B中,因?yàn)椋鶕?jù)不等式的性質(zhì),可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.12、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長的求法;14、##【解析】設(shè),然后根據(jù)橢圓的定義和余弦定理列方程組可求出,再由三角形的面積公式可求得結(jié)果【詳解】由,得,則,設(shè),則,在中,,由余弦定理得,,所以,所以,所以,所以,故答案為:15、200【解析】先根據(jù)分層抽樣的方法計算出該單位青年職工應(yīng)抽取的人數(shù),進(jìn)而算出青年職工的總?cè)藬?shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽?。ㄈ耍?因?yàn)槊咳吮怀橹械母怕适?.2,所以青年職工共有(人).故答案:200.16、【解析】根據(jù)線性約束條件畫出可行域,把目標(biāo)函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當(dāng)直線過點(diǎn)時,有最大值,且最大值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)圓心在過點(diǎn),的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標(biāo),進(jìn)而求得半徑,最后求出其標(biāo)準(zhǔn)方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點(diǎn)P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點(diǎn)的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因?yàn)?,,所以圓心C到直線l的距離,則,解得,②,圓上一點(diǎn)P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因?yàn)椋?,得,又,所以圓心C到直線l的距離,則,解得18、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,,證明四邊形為平行四邊形即可;(2)確定異面直線與所成的角為,計算三角形各邊長,根據(jù)余弦定理計算得到答案.【小問1詳解】設(shè)為中點(diǎn),連接,,∵為中點(diǎn),是的中點(diǎn),,,故,且,故,且,∴四邊形為平行四邊形,∴,平面,平面,故平面.【小問2詳解】∵,故異面直線與所成的角為,在中:,,.根據(jù)余弦定理:,所以異面直線與所成的角的余弦值為.19、(1)(2)當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【解析】(l)先計算的平均值,再代入公式計算得到(2)計算利潤為:計算最大值.【詳解】解:(1),,,所以對的回歸直線方程為:(2)設(shè)獲得的利潤為,,因?yàn)槎魏瘮?shù)的開口向下,所以當(dāng)時,取最大值,所以當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【點(diǎn)睛】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計算能力.20、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.21、(1);(2)存在,;(3)證明見解析,定值2【解析】(1)根據(jù)已知條件,用待定系數(shù)解方程組即可得到C的方程;(2)設(shè)出AB的方程,與橢圓方程聯(lián)立,得到根與系數(shù)關(guān)系,代入由確定方程內(nèi)即可得到結(jié)果;(3)設(shè)P點(diǎn)坐標(biāo),求出M和N坐標(biāo),設(shè)出圓G的圓心坐標(biāo),求得圓的半徑,由垂徑定理求得切線長|OT|,結(jié)合P在橢圓上可證|OT|為定值﹒【小問1詳解】設(shè)橢圓C的方程為將點(diǎn)代入橢圓方程有點(diǎn)解得,(舍)∴橢圓的方程為;【小問2詳解】設(shè),當(dāng)AB斜率存在時,設(shè),代入,整理得,由得,即,由韋達(dá)定理化簡得,即,設(shè)存在圓與直線相切,則,解得,∴圓的方程為;又若AB斜率不存在時,檢驗(yàn)知滿足條件,故存在圓心在原點(diǎn)的圓符合題意;【小問3詳解】如圖:,,設(shè),直線,令,得;直線,令,得;解法一:設(shè)圓G的圓心為,則,,,而,∴,∴,∴,即線段OT長度為定值2解法二:,而,∴,∴由切割線定理得.∴,即線段OT的長度為定值222、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點(diǎn)在橢圓上,以及即可求出的值,進(jìn)而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過的定點(diǎn),②由弦長公式求出,點(diǎn)到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論