2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年甘肅省武威市民勤縣第三中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是定義在上的函數(shù),且對(duì)任意都有,若函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,且,則()A. B.C. D.2.設(shè)滿足則的最大值為A. B.2C.4 D.163.對(duì)于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說(shuō)法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項(xiàng)和為4.如圖是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.5.一質(zhì)點(diǎn)從出發(fā),做勻速直線運(yùn)動(dòng),每秒的速度為秒后質(zhì)點(diǎn)所處的位置為()A. B.C. D.6.已知a,b為不相等實(shí)數(shù),記,則M與N的大小關(guān)系為()A. B.C. D.不確定7.()A.-2 B.0C.2 D.38.將一枚均勻的骰子先后拋擲3次,至少出現(xiàn)兩次點(diǎn)數(shù)為3的概率為()A. B.C. D.9.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項(xiàng)分別為2,3,5,8,12,17,23,則該數(shù)列的第31項(xiàng)為()A.336 B.467C.483 D.60110.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種11.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.12.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.從某校隨機(jī)抽取某次數(shù)學(xué)考試100分以上(含100分,滿分150分)的學(xué)生成績(jī),將他們的分?jǐn)?shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學(xué)生的成績(jī),則分?jǐn)?shù)在內(nèi)的人數(shù)為_(kāi)__________14.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.15.以拋物線C的頂點(diǎn)為圓心的圓交C于、兩點(diǎn),交C的準(zhǔn)線于、兩點(diǎn).,,則C的焦點(diǎn)到準(zhǔn)線的距離為_(kāi)___.16.已知數(shù)列前n項(xiàng)和為,且.(1)證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)在①;②;③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面橫線上,并加以解答.已知數(shù)列滿足___________,求的前n項(xiàng)和.注:如果選擇多個(gè)方案分別解答,按第一個(gè)方案解答計(jì)分.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,且()(1)求數(shù)列的通項(xiàng)公式;(2)在與之間插入個(gè)實(shí)數(shù),使這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:18.(12分)紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,也侵害木棉、錦葵等植物.為了防治蟲(chóng)害,從根源上抑制害蟲(chóng)數(shù)量.現(xiàn)研究紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表Ⅰ中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來(lái)進(jìn)行擬合表Ⅰ溫度x/℃20222527293135產(chǎn)卵數(shù)y/個(gè)711212465114325(1)請(qǐng)借助表Ⅱ中的數(shù)據(jù),求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時(shí)的殘差;(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合(2)說(shuō)明哪個(gè)模型的擬合效果更好參考數(shù)據(jù):.附:回歸方程中,相關(guān)指數(shù).19.(12分)已知函數(shù).其中e為然對(duì)數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)的零點(diǎn)個(gè)數(shù)20.(12分)已知拋物線上的點(diǎn)到其焦點(diǎn)F的距離為5.(1)求C的方程;(2)過(guò)點(diǎn)的直線l交C于A,B兩點(diǎn),且N為線段的中點(diǎn),求直線l的方程.21.(12分)已知三條直線:,:,:(是常數(shù)),.(1)若,,相交于一點(diǎn),求的值;(2)若,,不能圍成一個(gè)三角形,求的值:(3)若,,能圍成一個(gè)直角三角形,求的值.22.(10分)已知圓,圓,動(dòng)圓與圓外切,且與圓內(nèi)切.(1)求動(dòng)圓圓心的軌跡的方程,并說(shuō)明軌跡是何種曲線;(2)設(shè)過(guò)點(diǎn)的直線與直線交于兩點(diǎn),且滿足的面積是面積的一半,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,判斷得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,則化簡(jiǎn)可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題2、C【解析】可行域如圖,則直線過(guò)點(diǎn)A(0,1)取最大值2,則的最大值為4,選C.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得.3、B【解析】由等差數(shù)列的通項(xiàng)公式判定選項(xiàng)A正確;利用等比數(shù)列的通項(xiàng)公式求出,即判定選項(xiàng)B錯(cuò)誤;利用對(duì)數(shù)的運(yùn)算和等差數(shù)列的定義判定選項(xiàng)C正確;利用錯(cuò)位相減法求和,即判定選項(xiàng)D正確.【詳解】對(duì)于A:由條件可得,,即選項(xiàng)A正確;對(duì)于B:由條件可得,,即選項(xiàng)B錯(cuò)誤;對(duì)于C:因?yàn)椋?,則,即數(shù)列是首項(xiàng)和公差均為的等差數(shù)列,即選項(xiàng)C正確;對(duì)于D:,設(shè)數(shù)列的前項(xiàng)和為,則,,上面兩式相減可得,所以,即選項(xiàng)D正確.故選:B.4、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.5、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】2秒后質(zhì)點(diǎn)所處的位置為.故選:A【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,考查了基本知識(shí)掌握的情況以及學(xué)生的綜合素養(yǎng),屬于基礎(chǔ)題.6、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因?yàn)?,又,所以,即故選:A7、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C8、D【解析】利用次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生次的概率計(jì)算公式直接求解.【詳解】解:將一枚均勻的篩子先后拋擲3次,每次出現(xiàn)點(diǎn)數(shù)為3的概率都是至少出現(xiàn)兩次點(diǎn)數(shù)為3的概率為:故選:D9、B【解析】先由遞推關(guān)系利用累加法求出通項(xiàng)公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項(xiàng)為.故選:B10、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計(jì)算作答.【詳解】計(jì)算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個(gè)矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計(jì)數(shù)原理得(種),所以不同的涂法有12種.故選:C11、A【解析】由,得,從而可得答案.【詳解】解:因?yàn)?,所以,即,解?故選:A.12、C【解析】根據(jù)莖葉圖依次計(jì)算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總?cè)藬?shù)和頻率,即可得答案.【詳解】因?yàn)轭l率分布直方圖中所以小矩形面積和為1,所以,解得,所以分?jǐn)?shù)在內(nèi)的人數(shù)為.故答案為:3014、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)15、2【解析】畫(huà)出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設(shè)拋物線為y2=2px,如圖:,又,解得,設(shè)圓的半徑為,,解得:p=2,即C的焦點(diǎn)到準(zhǔn)線的距離為:2.故答案為:2.16、(1)證明見(jiàn)解析,;(2)答案見(jiàn)解析.【解析】(1)利用得出的遞推關(guān)系,變形后可證明是等比數(shù)列,由等比數(shù)列通項(xiàng)公式得,然后再除以得到新數(shù)列是等差數(shù)列,從而可求得;(2)選①,直接求出,用錯(cuò)位相減法求和;選②,求出,用分組(并項(xiàng))求和法求和;選③,求出,用裂項(xiàng)相消法求和【詳解】解:(1)當(dāng)時(shí),因?yàn)椋?,兩式相減得,.所以.當(dāng)時(shí),因?yàn)椋?,又,故,于是,所以是?為首項(xiàng)2為公比的等比數(shù)列.所以,兩邊除以得,.又,所以是以2為首項(xiàng)1為公差的等差數(shù)列.所以,即.(2)若選①:,即.因?yàn)椋?兩式相減得,所以.若選②:,即.所以.若選③:,即.所以.【點(diǎn)睛】本題考查求等差數(shù)列、等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法求和.?dāng)?shù)列求和的常用方法:設(shè)數(shù)列是等差數(shù)列,是等比數(shù)列,(1)公式法:等差數(shù)列或等比數(shù)列的求和直接應(yīng)用公式求和;(2)錯(cuò)位相減法:數(shù)列的前項(xiàng)和應(yīng)用錯(cuò)位相減法;(3)裂項(xiàng)相消法;數(shù)列(為常數(shù),)的前項(xiàng)和用裂項(xiàng)相消法;(4)分組(并項(xiàng))求和法:數(shù)列用分組求和法,如果數(shù)列中的項(xiàng)出現(xiàn)正負(fù)相間等特征時(shí)可能用并項(xiàng)求和法;(5)倒序相加法:滿足(為常數(shù))的數(shù)列,需用倒序相加法求和三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】(1)由兩式相減得,所以()因?yàn)榈缺?,且,所以,所以故?)由題設(shè)得,所以,所以,則,所以18、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對(duì)數(shù),利用表中的數(shù)據(jù)即可求解;(2)分別計(jì)算模型①、②在時(shí)殘差;(3)根據(jù)相關(guān)指數(shù)的大小判斷摸型①、②的殘差平方和,再得出那個(gè)模型的擬合效果更好.【小問(wèn)1詳解】由,得,令,得,由表Ⅱ數(shù)據(jù)可得,,,所以,所以回歸方程為(或).【小問(wèn)2詳解】由題意可知,模型①在時(shí)殘差為,模型②在時(shí)殘差為.【小問(wèn)3詳解】因?yàn)?,即模型①的相關(guān)指數(shù)大于模型②的相關(guān)指數(shù),由相關(guān)指數(shù)公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數(shù)據(jù)更接近真實(shí)數(shù)據(jù),所以模型①的擬合效果更好.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問(wèn)1詳解】當(dāng)時(shí),,易知定義域?yàn)镽,,當(dāng)時(shí),;當(dāng)或時(shí),故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問(wèn)2詳解】當(dāng)時(shí),x正0負(fù)0正單增極大值單減極小值單增當(dāng)時(shí),恒成立,∴;當(dāng)時(shí),①當(dāng)時(shí),,∴無(wú)零點(diǎn);②當(dāng)時(shí),,∴有1個(gè)零點(diǎn);③當(dāng)時(shí),,又當(dāng)時(shí),單調(diào)遞增,,∴有2個(gè)零點(diǎn);綜上所述:當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題.(4)考查數(shù)形結(jié)合思想的應(yīng)用20、(1)(2)【解析】(1)根據(jù)拋物線的定義可得,求得,即可得出答案;(2)設(shè),利用點(diǎn)差法求出直線l的斜率,再利用直線的點(diǎn)斜式方程即可得出答案.【小問(wèn)1詳解】解:由拋物線定義可知:,解得:,∴C的方程為;【小問(wèn)2詳解】解:設(shè),則,兩式作差得,∴直線l的斜率,∵為的中點(diǎn),∴,∴,∴直線l的方程為,即(經(jīng)檢驗(yàn),所求直線符合條件).21、(1)(2)或或(3)或【解析】(1)由二條已知直線求交點(diǎn),代入第三條直線即可;(2)不能圍成一個(gè)三角形,過(guò)二條已知直線的交點(diǎn),或者與它們平行;(3)由直線互相垂直得,斜率之積為-1.【小問(wèn)1詳解】顯然,相交,由得交點(diǎn),由點(diǎn)代入得所以當(dāng),,相交時(shí),.【小問(wèn)2詳解】過(guò)定點(diǎn),因?yàn)?,,不能圍成三角形,所以,或與平行,或與平行,所以,或,或.【小問(wèn)3詳解】顯然與不垂直,所以,且或所以的值為或22、(1)(2)或【解析】(1)設(shè)圓的半徑為,圓的半徑為,圓的半徑為,由題意,,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論