2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年河北省涿鹿縣北晨學(xué)校數(shù)學(xué)高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,D為上的點,且,則()A. B.C. D.2.如果雙曲線的一條漸近線方程為,且經(jīng)過點,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.3.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80004.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.5.在正四面體中,點為所在平面上動點,若與所成角為定值,則動點的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線6.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.7.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.8.已知,若,是第二象限角,則=()A. B.5C. D.109.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知點,在雙曲線上,線段的中點,則()A. B.C. D.11.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.12.已知F(3,0)是橢圓的一個焦點,過F且垂直x軸的弦長為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=1二、填空題:本題共4小題,每小題5分,共20分。13.求值______.14.甲、乙兩人獨立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________15.已知某農(nóng)場某植物高度,且,如果這個農(nóng)場有這種植物10000棵,試估計該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.16.已知曲線,則曲線在點處的切線方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足:,,求數(shù)列的通項公式.18.(12分)已知數(shù)列的前n項和為,,且(1)求數(shù)列的通項公式;(2)令,記數(shù)列的前n項和為,求證:19.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標(biāo)準(zhǔn)方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程20.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點21.(12分)設(shè)數(shù)列的前項和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值22.(10分)已知函數(shù).(1)當(dāng)時,證明:存在唯一的零點;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B2、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點代入,進而求得答案.【詳解】因為雙曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.3、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.4、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時,單調(diào)遞增,則,所以A選項和C選項錯誤;當(dāng)時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是減函數(shù).5、B【解析】把條件轉(zhuǎn)化為與圓錐的軸重合,面與圓錐的相交軌跡即為點的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點的軌跡.根據(jù)題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進一步計算與平面所成角為,即時,軌跡為拋物線,時,軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點睛】本題考查了平面截圓錐面所得軌跡問題,考查了轉(zhuǎn)化化歸思想,屬于難題.6、B【解析】根據(jù)拋物線和寫出焦點坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.7、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B8、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D9、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.10、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達定理得:,,則故選:D11、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.12、C【解析】根據(jù)已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:14、【解析】根據(jù)題意,由相互獨立事件概率的乘法公式可得密碼沒有被破譯的概率,進而由對立事件的概率性質(zhì)分析可得答案【詳解】解:根據(jù)題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒有被破譯,即甲乙都沒有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:15、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135916、【解析】求解導(dǎo)函數(shù),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率,并計算,利用點斜式寫出切線方程.【詳解】,由題意,切線的斜率為,,所以曲線在點處的切線方程為,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題設(shè)條件,結(jié)合等差數(shù)列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應(yīng)用累加法、錯位相減法及等比數(shù)列前n項和公式求的通項公式.【小問1詳解】令公差為d,由得:,解得.所以.【小問2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.18、(1)(2)證明見解析【解析】(1)依題意可得,即可得到是以為首項,為公比的等比數(shù)列,從而求出數(shù)列的通項公式;(2)由(1)可得,利用錯位相減法求和,即可證明;【小問1詳解】解:因為,,所以,所以是以為首項,為公比的等比數(shù)列,所以,所以;【小問2詳解】解:由(1)可知,所以①,所以②;①②得所以;19、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設(shè),,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設(shè)橢圓C的方程為,記,則,,,,,曲線的標(biāo)準(zhǔn)方程為【小問2詳解】根據(jù)橢圓對稱性可知直線l斜率存在,設(shè),則,由①-②得,,∴l(xiāng):,即.20、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時,設(shè)直線方程為,則,,,,則,∴,此時直線MN的方程為當(dāng)直線MN斜率存在時,設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。21、(1);詳見解析;(2)5.【解析】(1)由題可得,由條件可依次求各項,即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進而可得,結(jié)合條件即求.【小問1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項,公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當(dāng)時,,成立;假設(shè)時,等式成立,即,則時,,∴,∴當(dāng)時,等式也成立,∴,∴數(shù)列是首項,公差為的等差數(shù)列.【小問2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又數(shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點睛】關(guān)鍵點點睛:第一問的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問求出,,即得.22、(1)證明見解析;(2)【解析】(1)當(dāng)時,求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時,不滿足題意,故,又定義域為,講不等式化簡,參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實數(shù)的取值范圍【詳解】(1)函數(shù)的定義域為,當(dāng)時,由,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;.且,故存在唯一的零點;(2)當(dāng)時,不滿足恒成立,故由定義域為,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論