2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年云南省曲靖市陸良縣第五中學數(shù)學高二上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,AC與BD的交點為M.設,則下列向量中與相等的向量是()A. B.C. D.2.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.3.已知點B是A(3,4,5)在坐標平面xOy內(nèi)的射影,則||=()A. B.C.5 D.54.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數(shù)有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤5.下列結(jié)論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.36.已知雙曲線:()的離心率為,則的漸近線方程為()A. B.C. D.7.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.8.已知,,,則點C到直線AB的距離為()A.3 B.C. D.9.已知數(shù)列的通項公式為,按項的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動數(shù)列 D.常數(shù)列10.已知是等差數(shù)列的前項和,,,則的最小值為()A. B.C. D.11.若“”是“”的充分不必要條件,則實數(shù)m的值為()A.1 B.C.或1 D.或12.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點處的切線方程為______14.過橢圓上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.15.圓錐的高為1,底面半徑為,則過圓錐頂點的截面面積的最大值為____________16.若過點作圓的切線,則切線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和18.(12分)設數(shù)列的前n項和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項公式;(2)在(1)的條件下,設,求數(shù)列的前項和.19.(12分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當軸時,(1)求橢圓E的方程;(2)求的范圍20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標21.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個條件中選擇兩個作已知,使得平面,并給出證明.條件①:為的中點;條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.22.(10分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)代入計算化簡即可.【詳解】故選:B.2、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D3、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C4、C【解析】求出兩直線垂直時m值判斷①;由復合命題真值表可判斷②;化簡不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C5、C【解析】構(gòu)造函數(shù)利用導數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C6、A【解析】先根據(jù)雙曲線的離心率得到,然后由,得,即為所求的漸近線方程,進而可得結(jié)果【詳解】∵雙曲線的離心率,∴又由,得,即雙曲線()的漸近線方程為,∴雙曲線的漸近線方程為故選:A7、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.8、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設點C到直線AB的距離為d,則故選:D9、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.10、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.11、B【解析】利用定義法進行判斷.【詳解】把代入,得:,解得:或.當時,可化為:,解得:,此時“”是“”的充要條件,應舍去;當時,可化為:,解得:或,此時“”是“”的充分不必要條件.故.故選:B12、D【解析】根據(jù)已知條件可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.14、【解析】相關點法求解軌跡方程.【詳解】設,則,則,即,因為,代入可得,即的軌跡方程為.故答案為:15、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設軸截面頂角為,因為圓錐的高為1,底面半徑為,所以,,所以,,設圓錐母線長為,則,截面的面積為,因為,所以時,故答案為:216、或【解析】根據(jù)圓心到切線的距離等于圓的半徑即可求解.【詳解】由題意可知,,故在圓外,則過點做圓的切線有兩條,且切線斜率必存在,設切線為,即,則圓心到直線的距離,解得或,故切線方程為或故答案為:或三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數(shù)列公比為【小問2詳解】18、(1)證明見解析,;(2).【解析】(1)利用與的關系求數(shù)列的遞推關系,即得證明結(jié)論,并根據(jù)等比數(shù)列求通項公式;(2)根據(jù)(1)的結(jié)果求出,再分和,求.【詳解】(1)當時,,,當時,,與已知式作差得,即,又,∴,∴,故數(shù)列是以為首項,2為公比的等比數(shù)列,所以(2)由(1)知,∴,若,,若,,∴.【點睛】關鍵點點睛:本題的關鍵是第二問弄清楚數(shù)列與的前項和的關系,在分段求數(shù)列的前項和.19、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進而得到答案.【小問1詳解】當軸時,取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當軸時,由(1)知:,所以,當AB斜率為k時,直線AB為,,消去y得,所以,,所以,綜上,的范圍是.20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設,連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設,連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標系,求平面、平面的法向量,應用空間向量夾角的坐標表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設,連結(jié),,又,分別是,的中點,∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設,連結(jié).因為平面,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因為,,兩兩垂直,如圖,以為原點,建立空間直角坐標系,則,,,,,,所以,.由(1)知:平面的一個法向量為.設平面的法向量為,則,令,則.設平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.22、(1)選①:外離;選②:相切;(2)【解析】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論