版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年浙江省杭州市浙大附中高二數(shù)學第一學期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.2.在等差數(shù)列中,,,則()A. B.C. D.3.若數(shù)列的通項公式為,則該數(shù)列的第5項為()A. B.C. D.4.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.5.橢圓的焦點坐標為()A.和 B.和C.和 D.和6.已知函數(shù)的值域為,則實數(shù)的取值范圍是()A. B.C. D.7.已知定義在上的函數(shù)的導函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.8.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.9.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.910.下列說法中正確的是()A.棱柱的側面可以是三角形B.棱臺的所有側棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等11.直線l:的傾斜角為()A. B.C. D.12.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若遞增數(shù)列滿足,則實數(shù)的取值范圍為__________.14.已知是橢圓的一個焦點,為橢圓上一點,為坐標原點,若為等邊三角形,則橢圓的離心率為__________15.若過點和的直線與直線平行,則_______16.已知復數(shù)對應的點在復平面第一象限內(nèi),甲、乙、丙三人對復數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題的題設條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和得到最小值時的值.18.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由19.(12分)中,內(nèi)角、、所對的邊為、、,.(1)求角的大??;(2)若、、成等差數(shù)列,且,求邊長的值.20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?21.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.22.(10分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C2、B【解析】利用等差中項的性質可求得的值,進而可求得的值.【詳解】由等差中項的性質可得,則.故選:B.3、C【解析】直接根據(jù)通項公式,求;【詳解】,故選:C4、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率;故選:D5、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D6、D【解析】求出函數(shù)在時值的集合,函數(shù)在時值的集合,再由已知并借助集合包含關系即可作答.【詳解】當時,在上單調遞增,,,則在上值的集合是,當時,,,當時,,當時,,即在上單調遞減,在上單調遞增,,,則在上值的集合為,因函數(shù)的值域為,于是得,則,解得,所以實數(shù)的取值范圍是.故選:D7、D【解析】構造函數(shù),用導數(shù)判斷函數(shù)單調性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.8、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B9、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B10、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結構特征依次判斷選項即可.【詳解】棱柱的側面都是平行四邊形,A不正確;棱臺是由對應的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應該為正棱錐的側棱長都相等,所以D不正確.故選:B.11、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.12、D【解析】根據(jù)點到直線的距離與點到點之間距離的關系化簡即可.【詳解】定圓的圓心,半徑為2,設動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)的單調性列不等式,由此求得的取值范圍.【詳解】由于是遞增數(shù)列,所以.所以的取值范圍是.故答案為:14、##【解析】根據(jù)題中幾何關系,求得點坐標,代入橢圓方程求得齊次式,整理化簡即可求得離心率.【詳解】根據(jù)題意,取點為第一象限的點,過點作的垂線,垂足為,如下所示:因為△為等邊三角形,又,故可得則點的坐標為,代入橢圓方程可得:,又,整理得:,即,解得(舍)或.故答案為:.15、【解析】根據(jù)兩直線的位置關系求解.【詳解】因為過點和的直線與直線平行,所以,解得,故答案為:316、##【解析】設,則,然后分別求出甲,乙,丙對應的結論,先假設甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設,則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數(shù)對應的點在復平面第一象限內(nèi),所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)選擇條件見解析,(2)【解析】(1)設等差數(shù)列的公差為,由,得到,選①,聯(lián)立求解;選②,聯(lián)立求解;選③,聯(lián)立求解;(2)由(1)知,令求解.【小問1詳解】解:設等差數(shù)列的公差為,得,選①,得,故,∴.選②,得,得,故,∴.選③,,得,故,∴;【小問2詳解】由(1)知,,,∴數(shù)列是遞增等差數(shù)列.由,得,∴時,,時,,∴時,得到最小值.18、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1);(2).【解析】(1)利用正弦定理可求得的值,結合角的取值范圍可求得角的值;(2)由三角形的面積公式可求得的值,由已知可得,利用余弦定理可得出關于的等式,即可求得邊的長.【小問1詳解】解:因為,由正弦定理可得,,則,可得,,,因此,.【小問2詳解】解:,可得,因為、、成等差數(shù)列,則,由余弦定理可得,解得.20、答案見解析【解析】由已知條件可得,假設時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當時,,得,從而,當時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當?shù)炔顢?shù)列的前n項和存在最小值時,假設時,取最小值,所以;若補充條件是①,因為,,從而,由得,所以,由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以,故實數(shù)的取值范圍為若補充條件是②,由,即,又,所以.所以,由于該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,故實數(shù)不存在以下為嚴格的證明:由等差數(shù)列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數(shù)不存在若補充條件是③,由,得,又,所以,所以由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數(shù)的取值范圍為21、(1)3(2),【解析】(1)先求出函數(shù)的導數(shù),根據(jù)極值點可得導數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調遞增,在上單調遞減,故在上為增函數(shù),在上為減函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物科技藥物產(chǎn)品區(qū)域代理合作協(xié)議4篇
- 二零二五年度婚姻登記處標準離婚協(xié)議書模板定制合同4篇
- 二零二五版煤礦場地綜合利用租賃協(xié)議4篇
- 2025年度個人借款給有限責任公司合同范本(專項資金)4篇
- 2025年度鋁包木門窗采購安裝及售后服務合同4篇
- 2025年度地下綜合交通樞紐停車場管理服務合同4篇
- 2025年度大米品牌推廣與個人代理合同4篇
- 二零二五版國際貿(mào)易產(chǎn)業(yè)鏈協(xié)同發(fā)展合同3篇
- 二零二五年度酒店智能門禁系統(tǒng)采購與安裝合同4篇
- 2025年度農(nóng)村土地經(jīng)營權抵押貸款合同范本8篇
- 國家自然科學基金項目申請書
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術試卷試題真題(答案詳解)
- 《品牌形象設計》課件
- 倉庫管理基礎知識培訓課件1
- 藥品的收貨與驗收培訓課件
- GH-T 1388-2022 脫水大蒜標準規(guī)范
- 高中英語人教版必修第一二冊語境記單詞清單
- 政府機關保潔服務投標方案(技術方案)
- HIV感染者合并慢性腎病的治療指南
評論
0/150
提交評論