版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省佛山一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.22.記等差數(shù)列的前n項(xiàng)和為,若,,則等于()A.5 B.31C.38 D.413.若不等式組表示的區(qū)域?yàn)?,不等式表示的區(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.4.如圖,在正方體中,,,,若為的中點(diǎn),在上,且,則等于()A. B.C. D.5.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個(gè)不同零點(diǎn),則()A.16 B.C.14 D.6.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.7.一盒子里有黑色、紅色、綠色的球各一個(gè),現(xiàn)從中選出一個(gè)球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對(duì)立事件 B.是對(duì)立事件,不是互斥事件C.既是互斥事件,也是對(duì)立事件 D.既不是互斥事件也不是對(duì)立事件8.如果,,…,是拋物線C:上的點(diǎn),它們的橫坐標(biāo)依次為,,…,,點(diǎn)F是拋物線C的焦點(diǎn).若=10,=10+n,則p等于()A.2 B.C. D.49.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長(zhǎng)為2,則雙曲線C的方程為()A. B.C. D.10.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.2411.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同12.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長(zhǎng)為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知存在正數(shù)使不等式成立,則的取值范圍_____14.若函數(shù),則在點(diǎn)處切線的斜率為_(kāi)_____15.某市開(kāi)展“愛(ài)我內(nèi)蒙,愛(ài)我家鄉(xiāng)”攝影比賽,9位評(píng)委給參賽作品A打出的分?jǐn)?shù)如莖葉圖所示,記分員算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是______16.已知,,且與的夾角為鈍角,則x的取值范圍是___.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.18.(12分)已知橢圓的離心率為,且過(guò)點(diǎn).(1)求橢圓的方程;(2)四邊形的頂點(diǎn)在橢圓上,且對(duì)角線,均過(guò)坐標(biāo)原點(diǎn),若,求的取值范圍.19.(12分)已知直線l過(guò)點(diǎn),與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn)(1)若的面積為,求直線l的方程;(2)求的面積的最小值20.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)設(shè)函數(shù),,,求證:.21.(12分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點(diǎn),,.四邊形PDCE為矩形,線段PC交DE于點(diǎn)N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值22.(10分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機(jī)、軍工、航天等多個(gè)領(lǐng)域,是能夠影響一個(gè)國(guó)家現(xiàn)代工業(yè)的重要因素.根據(jù)市場(chǎng)調(diào)研與統(tǒng)計(jì),某公司七年時(shí)間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:(1)根據(jù)折線圖數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵(lì)科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時(shí),國(guó)家給予公司補(bǔ)貼5億元,預(yù)測(cè)當(dāng)芯片的研發(fā)投入為17億元時(shí)公司的實(shí)際收益附:其回歸方程的斜率和截距的最小二乘法估計(jì)分別為,.參考數(shù)據(jù),
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時(shí),,即,解得;當(dāng)時(shí),恒成立,的零點(diǎn)為又當(dāng)時(shí),為增函數(shù),故在,上無(wú)極值點(diǎn);當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,時(shí),取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題2、A【解析】設(shè)等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設(shè)等差數(shù)列的公差為d,由題知:,解得.故選:A.3、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.4、B【解析】利用空間向量的加減法、數(shù)乘運(yùn)算推導(dǎo)即可.【詳解】.故選:B.5、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡(jiǎn),即可求解.【詳解】由,是函數(shù)的兩個(gè)不同零點(diǎn),可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.6、B【解析】利用函數(shù)的奇偶性排除選項(xiàng)A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域?yàn)?,關(guān)于原點(diǎn)對(duì)稱.所以函數(shù)是奇函數(shù),排除選項(xiàng)A,C.當(dāng)時(shí),,排除選項(xiàng)D,故選:B7、A【解析】根據(jù)事件的關(guān)系進(jìn)行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對(duì)立事件.故選:A.【點(diǎn)睛】本題考查事件關(guān)系的判斷,考查互斥事件和對(duì)立事件概率的理解,屬于基礎(chǔ)題.8、A【解析】根據(jù)拋物線定義得個(gè)等式,相加后,利用已知條件可得結(jié)果.【詳解】拋物線C:的準(zhǔn)線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用拋物線的定義解題是解題關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D10、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式相關(guān)計(jì)算求出公差,進(jìn)而求出首項(xiàng).【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B11、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:12、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、(1,1)【解析】存在性問(wèn)題轉(zhuǎn)化為最大值,運(yùn)用均值不等式,求出的最大值,轉(zhuǎn)化成解對(duì)數(shù)不等式,進(jìn)而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時(shí),即:時(shí),∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點(diǎn)睛】本題考查均值不等式的應(yīng)用和對(duì)數(shù)不等式的解法,還涉及存在性問(wèn)題,考查化簡(jiǎn)計(jì)算能力14、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點(diǎn)處切線的斜率為.故答案為:15、1【解析】由平均數(shù)列出方程,求出x的值.【詳解】由題意得:,解得:.故答案為:116、∪【解析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】【小問(wèn)1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問(wèn)2詳解】,所以,又平面平面,同理平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.18、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,且過(guò)點(diǎn),由求解;(2)設(shè)直線AC方程為,則直線BD的方程為,分時(shí),與橢圓方程聯(lián)立求得A,B的坐標(biāo),再利用數(shù)量積求解.【小問(wèn)1詳解】解:因?yàn)闄E圓的離心率為,且過(guò)點(diǎn),所以,所以,所以橢圓的方程為;【小問(wèn)2詳解】設(shè)直線AC的方程為,則直線BD的方程為.當(dāng)時(shí),聯(lián)立,得,不妨設(shè)A,聯(lián)立,得,當(dāng)B時(shí),,,當(dāng)B時(shí),,,當(dāng)時(shí),同理可得上述結(jié)論.綜上,19、(1)或(2)4【解析】(1)設(shè)直線方程為,根據(jù)所過(guò)的點(diǎn)及面積可得關(guān)于的方程組,求出解后可得直線方程,我們也可以設(shè)直線,利用面積求出后可得直線方程.(2)結(jié)合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問(wèn)1詳解】法一:(1)設(shè)直線,則解得或,所以直線或法二:設(shè)直線,,則,則,∴或﹣8所以直線或【小問(wèn)2詳解】法一:∵,∴,∴,此時(shí),∴面積的最小值為4,此時(shí)直線法二:∵,∴,此時(shí),∴面積的最小值為4,此時(shí)直線20、(1),無(wú)極大值(2)證明見(jiàn)解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,進(jìn)而確定極值點(diǎn),求得答案;(2)將要證明的不等式變形為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性,求其最值,進(jìn)而證明結(jié)論.【小問(wèn)1詳解】當(dāng)時(shí),,,由得,列表得:1--0+減減極小值增由上表可知,無(wú)極大值.;【小問(wèn)2詳解】證明:,即證;∵,則,故只需證,即證令,,得,得,∴在上遞增,在上遞減∴,∴,∴.21、(1)證明見(jiàn)解析;(2).【解析】(1)記PC交DE于點(diǎn)N,然后證明FN∥AC,進(jìn)而通過(guò)線面平行的判定定理證明問(wèn)題;(2)建立空間直角坐標(biāo)系,進(jìn)而通過(guò)空間向量夾角公式求得答案.【小問(wèn)1詳解】因?yàn)樗倪呅蜳DCE為矩形,線段PC交DE于點(diǎn)N,所以N為PC的中點(diǎn)連接FN,在△PAC中,F(xiàn),N分別為PA,PC的中點(diǎn),所以FN∥AC,因?yàn)槠矫鍰EF,平面DEF,所以AC∥平面DEF.【小問(wèn)2詳解】因?yàn)镻D垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP兩兩垂直,如圖以D為原點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年籃球運(yùn)動(dòng)場(chǎng)地安全設(shè)施安裝與檢修合同3篇
- 2025版土地整治工程土方運(yùn)輸居間代理協(xié)議3篇
- 2025版教育培訓(xùn)投資入股合同范本大全3篇
- 2025年度個(gè)人與個(gè)人車輛購(gòu)置借款合同2篇
- 2025版教職工宿舍分配與使用管理合同3篇
- 二零二五版留置車輛維修工程借款協(xié)議4篇
- 2024金融科技支付系統(tǒng)集成與運(yùn)營(yíng)合同
- 二零二五年度體育賽事官方運(yùn)動(dòng)服贊助合同示例3篇
- 渣土運(yùn)輸及循環(huán)經(jīng)濟(jì)承包合同(二零二五年度)3篇
- 2025年達(dá)人帶貨直播平臺(tái)合作協(xié)議書(shū)2篇
- 2024企業(yè)答謝晚宴會(huì)務(wù)合同3篇
- 電氣工程及其自動(dòng)化專業(yè)《畢業(yè)設(shè)計(jì)(論文)及答辯》教學(xué)大綱
- 《客艙安全管理與應(yīng)急處置》課件-第14講 應(yīng)急撤離
- 中華人民共和國(guó)文物保護(hù)法
- 節(jié)前物業(yè)安全培訓(xùn)
- 阿里巴巴國(guó)際站:2024年珠寶眼鏡手表及配飾行業(yè)報(bào)告
- 高甘油三酯血癥相關(guān)的器官損傷
- 手術(shù)室護(hù)士考試題及答案
- 牙膏項(xiàng)目創(chuàng)業(yè)計(jì)劃書(shū)
- 單位食堂供餐方案
- DB42-T 2204-2024 湖沼濕地溫室氣體通量監(jiān)測(cè)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論