2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省唐河縣友蘭實驗高中高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.2.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.254.若數(shù)列滿足,,則數(shù)列的通項公式為()A. B.C. D.5.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.6.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.727.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題8.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項9.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.1610.在空間直角坐標(biāo)系中,若,,則點B的坐標(biāo)為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)11.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為12.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓交于兩點,則面積的最大值為__________.14.已知函數(shù)則的值為.____15.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.16.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準(zhǔn)時發(fā)車,則他等車時間不超過5分鐘的概率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列前項和.18.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值19.(12分)已知數(shù)列的前項和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.20.(12分)浙江省新高考采用“3+3”模式,其中語文、數(shù)學(xué)、外語三科為必考科目,另外考生根據(jù)自己實際需要在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門科目中自選3門參加考試.下面是某校高一200名學(xué)生在一次檢測中的物理、化學(xué)、生物三科總分成績,以組距20分成7組:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],畫出頻率分布直方圖如下圖所示(1)求頻率分布直方圖中的值;(2)由頻率分布直方圖,求物理、化學(xué)、生物三科總分成績的第60百分位數(shù);(3)若小明決定從“物理、化學(xué)、生物、政治、技術(shù)”五門學(xué)科中選擇三門作為自己的選考科目,求小明選中“技術(shù)”的概率21.(12分)著名的“康托爾三分集”是由德國數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)22.(10分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當(dāng)垂直長軸時,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先確定拋物線的焦點坐標(biāo),和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結(jié)果.【詳解】因為拋物線的焦點坐標(biāo)為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B2、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D3、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A4、B【解析】根據(jù)等差數(shù)列的定義和通項公式直接得出結(jié)果.【詳解】因為,所以數(shù)列是等差數(shù)列,公差為1,所以.故選:B5、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.6、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.7、D【解析】因為非p為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.8、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設(shè)數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C9、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C10、C【解析】利用點的坐標(biāo)表示向量坐標(biāo),即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C11、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D12、C【解析】畫出直觀圖,利用椎體體積公式進行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點的直線,如圖,連接,故,解得,此時,故的面積為,當(dāng)且僅當(dāng)時等號成立,此時即,故答案為:.14、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導(dǎo)數(shù)的運算15、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:16、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意求出首項和公比即可得出通項公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項和公式即可求出.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項,記數(shù)列前項和為,則.18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標(biāo)原點建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為19、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項和.20、(1)=0.005(2)232(3)【解析】(1)由頻率和為1列方程求解即可,(2)由于前3組的頻率和小于0.6,前4組的頻率和大于0.6,所以三科總分成績的第60百分位數(shù)在第4組內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,從而可求得結(jié)果,(3)利用列舉法求解即可【小問1詳解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小問2詳解】因為(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科總分成績的第60百分位數(shù)在[220,240)內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,解得=232,即第60百分位數(shù)為232【小問3詳解】將物理、化學(xué)、生物、政治、技術(shù)5門學(xué)科分別記作.則事件A表示小明選中“技術(shù)”,則,所以P(A)=21、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度為,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長后組成的數(shù)為以為首項,為公比的等比數(shù)列,第1次操作去掉的區(qū)間長為,剩余區(qū)間的長度和為,第2次操作去掉兩個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第3次操作去掉四個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第4次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,第次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,所以第次操作后剩余的各區(qū)間長度和為;【小問3詳解】解:設(shè)定義區(qū)間,則區(qū)間長度為1,由(2)可得第次操作剩余區(qū)間的長度和為,要使得“康托三分集”的各區(qū)間的長度之和不大于,則滿足,即,即,因為為整數(shù),所以的最小值為.22、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設(shè)切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)由題意,點橢圓上的一動點,且的最小值是1,得,因為當(dāng)垂直長軸時,可得,所以,即,又由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論