版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省安仁一中、資興市立中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,分別為的中點(diǎn),為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.2.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.3.已知圓與直線,則圓上到直線的距離為1的點(diǎn)的個(gè)數(shù)是()A.1 B.2C.3 D.44.《米老鼠和唐老鴨》這部動(dòng)畫(huà)給我們的童年帶來(lái)了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫(huà)形象.已知3個(gè)圓方程分別為:圓圓,圓若過(guò)原點(diǎn)的直線與圓、均相切,則截圓所得的弦長(zhǎng)為()A. B.C. D.5.函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是A. B.C. D.6.下列事件:①連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn);②某人買(mǎi)彩票中獎(jiǎng);③從集合中任取兩個(gè)不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時(shí)會(huì)沸騰.其中是隨機(jī)事件的個(gè)數(shù)是()A.1 B.2C.3 D.47.已知等差數(shù)列前項(xiàng)和為,且,,則此數(shù)列中絕對(duì)值最小的項(xiàng)為A.第5項(xiàng) B.第6項(xiàng)C.第7項(xiàng) D.第8項(xiàng)8.在數(shù)列中,,則等于A. B.C. D.9.傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類(lèi),若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.10.、是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,,過(guò)作的角平分線的垂線,垂足為,則的長(zhǎng)為A.1 B.2C.3 D.411.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.12.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)高為2的圓柱,底面周長(zhǎng)為2,該圓柱的表面積為.14.等比數(shù)列中,,,則數(shù)列的公比為_(kāi)___.15.已知函數(shù)定義域?yàn)?,值域?yàn)?,則______16.一個(gè)物體的運(yùn)動(dòng)方程為其中位移的單位是米,時(shí)間的單位是秒,那么物體在秒末的瞬時(shí)速度是__________米/秒三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:的離心率為,點(diǎn)為橢圓C上一點(diǎn)(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個(gè)動(dòng)點(diǎn),且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值18.(12分)已知橢圓:()的左、右焦點(diǎn)分別為,焦距為,過(guò)點(diǎn)作直線交橢圓于兩點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點(diǎn),求定點(diǎn)與交點(diǎn)所構(gòu)成的三角形面積的最大值.19.(12分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長(zhǎng)20.(12分)已知數(shù)列的前項(xiàng)和為,滿(mǎn)足_______請(qǐng)?jiān)冖伲虎?,;③三個(gè)條件中任選一個(gè),補(bǔ)充在上面的橫線上,完成上述問(wèn)題.注:若選擇不同的條件分別解答,則按第一個(gè)解答計(jì)分(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和21.(12分)已知橢圓,離心率為,短半軸長(zhǎng)為1(1)求橢圓C的方程;(2)已知直線,問(wèn):在橢圓C上是否存在點(diǎn)T,使得點(diǎn)T到直線l的距離最大?若存在,請(qǐng)求出這個(gè)最大距離;若不存在,請(qǐng)說(shuō)明理由22.(10分)如圖,第1個(gè)圖形需要4根火柴,第2個(gè)圖形需要7根火柴,,設(shè)第n個(gè)圖形需要根火柴(1)試寫(xiě)出,并求;(2)記前n個(gè)圖形所需的火柴總根數(shù)為,設(shè),求數(shù)列的前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長(zhǎng)為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A2、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.3、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點(diǎn)有兩個(gè).故選:B.4、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過(guò)點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得5、D【解析】原函數(shù)先減再增,再減再增,且位于增區(qū)間內(nèi),因此選D【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)圖象與原函數(shù)圖象的關(guān)系:若導(dǎo)函數(shù)圖象與軸的交點(diǎn)為,且圖象在兩側(cè)附近連續(xù)分布于軸上下方,則為原函數(shù)單調(diào)性的拐點(diǎn),運(yùn)用導(dǎo)數(shù)知識(shí)來(lái)討論函數(shù)單調(diào)性時(shí),由導(dǎo)函數(shù)的正負(fù),得出原函數(shù)的單調(diào)區(qū)間6、B【解析】因?yàn)殡S機(jī)事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個(gè)事件哪一個(gè)符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn)這一事件可能發(fā)生也可能不發(fā)生,①是隨機(jī)事件某人買(mǎi)彩票中獎(jiǎng)這一事件可能發(fā)生也可能不發(fā)生,②是隨機(jī)事件從集合,2,中任取兩個(gè)元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時(shí)才會(huì)沸騰,④是不可能事件故隨機(jī)事件有2個(gè),故選:B7、C【解析】設(shè)等差數(shù)列的首項(xiàng)為,公差為,,則,又,則,說(shuō)明數(shù)列為遞減數(shù)列,前6項(xiàng)為正,第7項(xiàng)及后面的項(xiàng)為負(fù),又,則,則在數(shù)列中絕對(duì)值最小的項(xiàng)為,選C.8、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對(duì)于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來(lái)觀察前面有限項(xiàng)的規(guī)律9、D【解析】根據(jù)前三個(gè)五邊形數(shù)可推斷出第四個(gè)五邊形數(shù).【詳解】第一個(gè)五邊形數(shù)為,第二個(gè)五邊形數(shù)為,第三個(gè)五邊形數(shù)為,故第四個(gè)五邊形數(shù)為.故選:D.10、A【解析】延長(zhǎng)交延長(zhǎng)線于N,則選:A.【點(diǎn)睛】涉及兩焦點(diǎn)問(wèn)題,往往利用橢圓定義進(jìn)行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問(wèn)題,兩者切入點(diǎn)為橢圓定義.11、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)?,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C12、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因?yàn)槌闪ⅲ悦}為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.14、【解析】根據(jù)等比數(shù)列的定義,結(jié)合已知條件,代值計(jì)算即可求得結(jié)果.【詳解】因?yàn)槭堑缺葦?shù)列,設(shè)其公比為,又,,故可得,解得.故答案為:.15、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進(jìn)而得解.【詳解】因?yàn)椋捎嘞液瘮?shù)的圖像與性質(zhì)可得,則,由值域?yàn)榭傻?,所以,故答案為?.【點(diǎn)睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.16、5【解析】,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)角平分線的性質(zhì),結(jié)合一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行求解即可.【小問(wèn)1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過(guò)點(diǎn),解得,∴橢圓C的方程為;【小問(wèn)2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關(guān)于直線對(duì)稱(chēng).設(shè)直線MP的斜率為k,則直線NP的斜率為∴設(shè)直線MP的方程為,直線NP的方程為設(shè)點(diǎn),由消去y,得∵點(diǎn)在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關(guān)于直線對(duì)稱(chēng)是解題的關(guān)鍵.18、(1)(2)【解析】(1)根據(jù)題意可得,,再由,即可求解.(2)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立求得關(guān)于的方程,利用弦長(zhǎng)公式求出,再利用點(diǎn)到直線的距離求出點(diǎn)到直線的距離,利用三角形的面積公式配方即可求解.【詳解】解(1)由題意得:,,∴,∴∴橢圓的方程為(2)∵直線的斜率為,∴可設(shè)直線的方程為與橢圓的方程聯(lián)立可得:①設(shè)兩點(diǎn)的坐標(biāo)為,由韋達(dá)定理得:,∴點(diǎn)到直線的距離,∴由①知:,,令,則,∴令,則在上的最大值為∴的最大值為綜上所述:三角形面積的最大值2.【點(diǎn)睛】本題考查了根據(jù)求橢圓的標(biāo)準(zhǔn)方程,考查了直線與橢圓額位置關(guān)系中三角形面積問(wèn)題,考查了學(xué)生的計(jì)算能力,屬于中檔題.19、(1)或(2)【解析】(1)根據(jù)兩條平行直線的距離公式列方程,化簡(jiǎn)求得的值.(2)利用弦長(zhǎng)公式求得.【小問(wèn)1詳解】因?yàn)閮蓷l平行直線:與:間的距離為3,所以解得或.【小問(wèn)2詳解】圓C:,圓心為,半徑為.圓心到直線的距離為,所以弦長(zhǎng)20、(1)條件選擇見(jiàn)解析,;(2).【解析】(1)選①,可得出,由可求得數(shù)列的通項(xiàng)公式;選②,分析可知數(shù)列是公差為的等差數(shù)列,根據(jù)已知條件求出的值,利用等差數(shù)列的求和公式可求得數(shù)列的通項(xiàng)公式;選③,在等式中令可求得的值,即可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法可求得.【小問(wèn)1詳解】解:選①,因?yàn)?,則,則,當(dāng)時(shí),,也滿(mǎn)足,所以,對(duì)任意的,;選②,因?yàn)?,則數(shù)列是公差為的等差數(shù)列,所以,,解得,則;選③,對(duì)任意的,,則,可得,因此,.【小問(wèn)2詳解】解:因?yàn)?,因此?21、(1);(2)存在,最大距離為.,理由見(jiàn)解析【解析】(1)根據(jù)離心率及短軸長(zhǎng)求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問(wèn)題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進(jìn)而判斷點(diǎn)T的存在性,即可求最大距離.【小問(wèn)1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問(wèn)2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡(luò)安全質(zhì)量保證合同3篇
- 2025年度公司與會(huì)計(jì)簽訂的財(cái)務(wù)會(huì)計(jì)信息合規(guī)性審查服務(wù)合同2篇
- 2025年度茶葉電商平臺(tái)物流配送服務(wù)合同3篇
- 二零二五年度新材料行業(yè)試用期勞動(dòng)合同規(guī)定3篇
- 農(nóng)村土地承包經(jīng)營(yíng)權(quán)流轉(zhuǎn)買(mǎi)賣(mài)合同(示范文本)2篇
- 二零二五年度綠色環(huán)保產(chǎn)業(yè)合伙合同樣本3篇
- 二零二五年度內(nèi)蒙古自治區(qū)交通運(yùn)輸行業(yè)勞動(dòng)合同書(shū)3篇
- 2025年度水泥罐車(chē)運(yùn)輸與環(huán)保節(jié)能技術(shù)研發(fā)合同3篇
- 2025年度年度城市公共設(shè)施維修服務(wù)合同3篇
- 2025年度全款購(gòu)車(chē)車(chē)輛維修保養(yǎng)合同范本3篇
- DB11∕T 1735-2020 地鐵正線周邊建設(shè)敏感建筑物項(xiàng)目環(huán)境振動(dòng)控制規(guī)范
- 沿用甲方背靠背合同協(xié)議
- 高等教育心理學(xué)試題及答案(高校教師資格考試)
- 舞蹈興趣小組活動(dòng)記錄
- 醫(yī)院檢驗(yàn)科實(shí)驗(yàn)室生物安全程序文件SOP
- 建立強(qiáng)大的人際影響力與領(lǐng)導(dǎo)力
- 九年級(jí)歷史期末考試質(zhì)量分析
- 視覺(jué)傳達(dá)設(shè)計(jì)教資面試
- 三創(chuàng)賽獲獎(jiǎng)-非遺文化創(chuàng)新創(chuàng)業(yè)計(jì)劃書(shū)
- 華師大版八年級(jí)下冊(cè)數(shù)學(xué)全冊(cè)課件
- 慢性高血壓并發(fā)重度子癇前期1
評(píng)論
0/150
提交評(píng)論