版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆山東省濟(jì)南市師范大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列求導(dǎo)錯誤的是()A. B.C. D.2.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計(jì)得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.3.已知空間向量,則()A. B.C. D.4.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.5.正三棱柱各棱長均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.16.設(shè),向量,,,且,,則()A. B.C.3 D.47.命題,,則是()A., B.,C., D.,8.甲、乙兩名同學(xué)8次考試的成績統(tǒng)計(jì)如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標(biāo)準(zhǔn)差分別為,,則()A.>,< B.>,>C.<,< D.<,>9.已知是邊長為6的等邊所在平面外一點(diǎn),,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.10.已知方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是()A. B.C. D.11.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.12.已知,,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.設(shè),,若將函數(shù)的圖像向左平移個單位能使其圖像與原圖像重合,則正實(shí)數(shù)的最小值為___________.15.兩個人射擊,互相獨(dú)立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________16.若與直線垂直,那么__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且)的圖象經(jīng)過點(diǎn)和
.(1)求實(shí)數(shù),的值;(2)若,求數(shù)列前項(xiàng)和
.18.(12分)如圖1是直角梯形,以為折痕將折起,使點(diǎn)C到達(dá)的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點(diǎn)P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由19.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知.(1)討論的單調(diào)性;(2)當(dāng)有最大值,且最大值大于時,求取值范圍.21.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.22.(10分)已知拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的直線與拋物線交于兩點(diǎn),其中點(diǎn)A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長度的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)導(dǎo)數(shù)運(yùn)算求得正確答案.【詳解】、、運(yùn)算正確.,B選項(xiàng)錯誤.故選:B2、B【解析】依題意該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B3、A【解析】求得,即可得出.【詳解】,,,.故選:A.4、A【解析】由題可得動點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A5、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C6、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)?,可得,解得,即,又因?yàn)椋傻?,解得,即,可得,所?故選:C.7、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因?yàn)槊},,所以,.故選:D8、A【解析】根據(jù)折線統(tǒng)計(jì)圖,結(jié)合均值、方差的實(shí)際含義判斷、及、的大小.【詳解】由統(tǒng)計(jì)圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.9、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計(jì)算方法來計(jì)算,即可計(jì)算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點(diǎn)上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.10、D【解析】根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,則,解得.故選:D.11、B【解析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)椋?,,則,因此,該雙曲線漸近線方程為.故選:B.12、D【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)?,故,故,又,在上的增函?shù),故,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.14、【解析】根據(jù)正弦型函數(shù)圖像平移法則和正弦函數(shù)性質(zhì)進(jìn)行解題.【詳解】解:由題意得:函數(shù)的圖像向左平移個單位后得:該函數(shù)與原函數(shù)圖像重合故可知,即故當(dāng)時,最小正實(shí)數(shù).故答案為:15、72【解析】利用獨(dú)立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:16、【解析】由兩條直線垂直知,得三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)將A、B點(diǎn)坐標(biāo)代入,計(jì)算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結(jié)合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.18、(1)(2)存在,靠近點(diǎn)D的三等分點(diǎn).【解析】(1)由題意建立空間直接坐標(biāo)系,求得的坐標(biāo),由求解;(2)假設(shè)棱上存在點(diǎn)P,設(shè),求得點(diǎn)p坐標(biāo),再求得平面PBE的一個法向量,由平面,得到為平面的一個法向量,然后由求解.【小問1詳解】解:因?yàn)椋运倪呅蜛BCE是平行四邊形,又,所以四邊形ABCE是菱形,,又平面與平面垂直,又平面與平面=EB,所以平面,建立如圖所示空間直接坐標(biāo)系:則,所以,則,所以異面直線與所成角的余弦值是;【小問2詳解】假設(shè)棱上存在點(diǎn)P,使平面與平面的夾角為,設(shè),則,又,設(shè)平面PBE的一個法向量為,則,即,則,由平面,則為平面的一個法向量,所以,解得.19、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項(xiàng)和公差,由此求得.(2)利用裂項(xiàng)求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.20、(1)時,在是單調(diào)遞增;時,在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當(dāng)時在無最大值,當(dāng)時最大值為因此.令,則在是增函數(shù),當(dāng)時,,當(dāng)時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域?yàn)?,若,則,在是單調(diào)遞增;若,則當(dāng)時,當(dāng)時,所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當(dāng)時在無最大值,當(dāng)時在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當(dāng)時,,當(dāng)時,因此a取值范圍是.考點(diǎn):本題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的應(yīng)用及分類討論思想.21、(1)(2)【解析】(1)由于在點(diǎn)處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,從而可求出其值域.【小問1詳解】因?yàn)楹瘮?shù)在處有極大值,所以,①且②聯(lián)立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數(shù)區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;又,所以在上的值域?yàn)?22、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人對個人民宿短租服務(wù)合同3篇
- 二零二五年度版權(quán)監(jiān)控合同2篇
- 二零二五版物流配送合同管理員安全生產(chǎn)保障協(xié)議3篇
- 二零二五年度餐飲業(yè)食品安全培訓(xùn)及咨詢服務(wù)合同范本3篇
- 二零二五年電梯安全知識競賽獎品贊助與提供合同3篇
- 二零二五年海參養(yǎng)殖基地與農(nóng)產(chǎn)品營銷策劃公司合作合同文本3篇
- 二零二五年度鋼結(jié)構(gòu)景觀亭臺制作安裝合同3篇
- 二零二五年度CFG樁基施工與監(jiān)理一體化承包合同2篇
- 二零二五年度高鐵站車庫租賃與行李寄存服務(wù)合同3篇
- 二零二五年教育培訓(xùn)機(jī)構(gòu)實(shí)習(xí)學(xué)生勞動合同規(guī)范文本3篇
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機(jī)和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試語文試題(含答案)
- 妊娠咳嗽的臨床特征
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2024年金融理財(cái)-擔(dān)保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報(bào)書
- 高中語文古代文學(xué)課件:先秦文學(xué)
- 人教版五年級上冊遞等式計(jì)算100道及答案
評論
0/150
提交評論