2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第1頁(yè)
2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第2頁(yè)
2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第3頁(yè)
2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第4頁(yè)
2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆遼寧省凌源市聯(lián)合校數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,則下列結(jié)論正確的是()A.B.C.D.2.斗笠,用竹篾夾油紙或竹葉粽絲等編織,是人們遮陽(yáng)光和雨的工具.某斗笠的三視圖如圖所示(單位:),若該斗笠水平放置,雨水垂直下落,則該斗笠被雨水打濕的面積為()A. B.C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.4.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A B.C. D.5.已知一個(gè)圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.6.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點(diǎn),,分別為左、右焦點(diǎn),為橢圓上一點(diǎn),下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個(gè)內(nèi)角為7.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-68.在中,角A,B,C所對(duì)的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形9.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)10.直線的方向向量為()A. B.C. D.11.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題12.焦點(diǎn)坐標(biāo)為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為_(kāi)______.14.若圓和圓的公共弦所在的直線方程為,則______15.如圖是一個(gè)邊長(zhǎng)為4的正方形二維碼,為了測(cè)算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機(jī)投擲1600個(gè)點(diǎn),其中落入白色部分的有700個(gè)點(diǎn),據(jù)此可估計(jì)黑色部分的面積為_(kāi)_____________16.經(jīng)過(guò)點(diǎn),,的圓的方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且,橢圓右焦點(diǎn)也為,離心率為(1)求拋物線方程和橢圓方程;(2)若不經(jīng)過(guò)的直線與拋物線交于、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),直線與橢圓交于、兩點(diǎn),求面積的最大值18.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項(xiàng)公式;(2)令求數(shù)列的前n項(xiàng)和;19.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且求A和B的大??;若M,N是邊AB上的點(diǎn),,求的面積的最小值20.(12分)已知拋物線:的焦點(diǎn)到頂點(diǎn)的距離為.(1)求拋物線的方程;(2)已知過(guò)點(diǎn)的直線交拋物線于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),設(shè)直線,的斜率分別為,,求的值.21.(12分)已知函數(shù),求(1)(2)(3)曲線在處的切線方程22.(10分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題可知:,,,故選;D2、A【解析】根據(jù)三視圖可知,該幾何體是由一個(gè)底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,則所求面積積為圓錐的側(cè)面積與圓環(huán)的面積之和【詳解】根據(jù)三視圖可知,該幾何體是由一個(gè)底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,所以該斗笠被雨水打濕的面積為,故選:A3、B【解析】寫(xiě)出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時(shí),,,,;,此時(shí),退出循環(huán),輸出的的為.故選:B【點(diǎn)睛】本題考查程序框圖的應(yīng)用,此類題要注意何時(shí)循環(huán)結(jié)束,建議數(shù)據(jù)不大時(shí)采用寫(xiě)出來(lái)的辦法,是一道容易題.4、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.5、B【解析】設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計(jì)算可得,利用扇形的面積公式計(jì)算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B6、B【解析】先求出橢圓的頂點(diǎn)和焦點(diǎn)坐標(biāo),對(duì)于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對(duì)于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對(duì)于A,若,則,∴,∴,不滿足條件,故A不符合條件;對(duì)于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對(duì)于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對(duì)于D,四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點(diǎn)睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.7、D【解析】根據(jù)向量共面列方程,化簡(jiǎn)求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D8、C【解析】根據(jù)三角恒等變換結(jié)合正弦定理化簡(jiǎn)求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.9、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點(diǎn)分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.【詳解】對(duì)(1),所有的點(diǎn)都在曲線上,故具有函數(shù)關(guān)系;對(duì)(2),所有的散點(diǎn)分布在一條直線附近,具有相關(guān)關(guān)系;對(duì)(3),所有的散點(diǎn)分布在一條曲線附近,具有相關(guān)關(guān)系;對(duì)(4),所有的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.故選:D.10、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個(gè)方向向量,因?yàn)?,所以向量為直線的方向向量,故選:D11、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C12、D【解析】依次確定選項(xiàng)中各個(gè)拋物線的焦點(diǎn)坐標(biāo)即可.【詳解】對(duì)于A,的焦點(diǎn)坐標(biāo)為,A錯(cuò)誤;對(duì)于B,的焦點(diǎn)坐標(biāo)為,B錯(cuò)誤;對(duì)于C,焦點(diǎn)坐標(biāo)為,C錯(cuò)誤;對(duì)于D,的焦點(diǎn)坐標(biāo)為,D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過(guò)某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).14、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.15、9【解析】先根據(jù)點(diǎn)數(shù)求解概率,再結(jié)合幾何概型求解黑色部分的面積【詳解】由題設(shè)可估計(jì)落入黑色部分概率設(shè)黑色部分的面積為,由幾何概型計(jì)算公式可得解得故答案為:916、【解析】設(shè)所求圓的方程為,然后將三個(gè)點(diǎn)的坐標(biāo)代入方程中解方程組求出的值,可得圓的方程【詳解】設(shè)所求圓的方程為,則,解得,所以圓的方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)拋物線方程為,橢圓方程為(2)【解析】(1)由,可得,繼而可得,故,再利用離心率,以及,即得解;(2)設(shè)直線方程為,與拋物線聯(lián)立,,結(jié)合韋達(dá)定理可得,再與橢圓聯(lián)立,,韋達(dá)定理代入,結(jié)合均值不等式即得解【小問(wèn)1詳解】由題意,解得:,故,,,,,所以拋物線方程為,橢圓方程為【小問(wèn)2詳解】設(shè)直線方程為,由消去得,,設(shè),,則因,所以或(舍去),所以直線方程為由,消去得,設(shè),,則設(shè)直線與軸交點(diǎn)為,則所以令,則,所以,當(dāng)且僅當(dāng)時(shí),即時(shí),取最大值18、(1),(2)【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項(xiàng)公式得到,根據(jù)通項(xiàng)公式的求法得到結(jié)果;(2)分組求和即可.【小問(wèn)1詳解】設(shè)的公差為,由已知,有解得,所以的通項(xiàng)公式為,的通項(xiàng)公式為.【小問(wèn)2詳解】,分組求和,分別根據(jù)等比數(shù)列求和公式與等差數(shù)列求和公式得到:.19、(1),(2)【解析】利用正余弦定理化簡(jiǎn)即求解A和B的大小利用正弦定理把CN、CM表示出來(lái),結(jié)合三角函數(shù)的性質(zhì),即可求解的面積的最小值【詳解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如圖所示:設(shè),,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此時(shí)故的面積的最小值為【點(diǎn)睛】本題考查了正余弦定理的應(yīng)用,三角函數(shù)的有界限求解最值范圍,考查了推理能力與計(jì)算能力,屬于中檔題20、(1)(2)【解析】(1)由拋物線的幾何性質(zhì)有焦點(diǎn)到頂點(diǎn)的距離為,從而即可求解;(2)當(dāng)直線的斜率不存在時(shí),不符合題意;當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,聯(lián)立拋物線的方程,由韋達(dá)定理及兩點(diǎn)間的斜率公式即可求解.【小問(wèn)1詳解】解:依題意,,解得,∴拋物線的方程為;【小問(wèn)2詳解】解:當(dāng)直線的斜率不存在時(shí),直線與拋物線僅有一個(gè)交點(diǎn),不符合題意;當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,由消去可得,∵直線交拋物線于不同的兩點(diǎn),∴,由韋達(dá)定理得,∴.21、(1)(2)(3)y=【解析】(1)由導(dǎo)數(shù)的運(yùn)算法則求解即可;(2)利用導(dǎo)函數(shù)計(jì)算即可;(3)由導(dǎo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論