版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山西省重點中學(xué)協(xié)作體數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓的圓心和半徑分別是()A., B.,C., D.,2.已知雙曲線:的左、右焦點分別為,,點在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.3.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.4.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結(jié)論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題5.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,6.在平行六面體中,,,,則()A. B.5C. D.37.已知函數(shù)的導(dǎo)數(shù)為,且,則()A. B.C.1 D.8.設(shè),,,…,,,則()A. B.C. D.9.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.10.《周髀算經(jīng)》中有這樣一個問題:從冬至起,接下來依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個節(jié)氣,其日影長依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個節(jié)氣的日影長之和為25.5尺,且前九個節(jié)氣日影長之和為85.5尺,則立春的日影長為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺11.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=112.閱讀如圖所示程序框圖,運行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足且,則________.數(shù)列的通項=________.14.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.15.設(shè),若直線與直線平行,則的值是________16.已知實數(shù),滿足不等式組,則目標函數(shù)的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點,(1)證明:;(2)設(shè)平面平面,求l與平面MND所成角的正弦值18.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)存在兩個極值點,且,若,求證:.19.(12分)進入11月份,大學(xué)強基計劃開始報名,某“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機抽取了部分學(xué)生的成績,得到如圖2所示的成績頻率分布直方圖:(1)估計五校學(xué)生綜合素質(zhì)成績的平均值和中位數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點值表示)(2)某校決定從本校綜合素質(zhì)成績排名前6名同學(xué)中,推薦3人參加強基計劃考試,若已知6名同學(xué)中有4名理科生,2名文科生,試求這3人中含文科生的概率.20.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)已知拋物線,過焦點的直線l交拋物線C于M、N兩點,且線段中點的縱坐標為2(1)求直線l的方程;(2)設(shè)x軸上關(guān)于y軸對稱的兩點P、Q,(其中P在Q的右側(cè)),過P的任意一條直線交拋物線C于A、B兩點,求證:始終被x軸平分22.(10分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標原點),.(1)求橢圓C的標準方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.2、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當為鈍角時的取值范圍,根據(jù)雙曲線的對稱性,可以只考慮點在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點分別為,,點在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對稱性不妨考慮點在雙曲線第一象限部分:當為鈍角時,在中,設(shè),有,,即,,所以;當時,所在直線方程,所以,,,根據(jù)圖象可得要使,點向右上方移動,此時,綜上所述:的取值范圍是.故選:C【點睛】此題考查雙曲線中焦點三角形相關(guān)計算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.3、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A4、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A5、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.6、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.7、B【解析】直接求導(dǎo),令求出,再將帶入原函數(shù)即可求解.【詳解】由得,當時,,解得,所以,.故選:B8、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B9、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A10、B【解析】設(shè)影長依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項公式及前項和公式求出首項和公差,即可得出答案.【詳解】解:設(shè)影長依次成等差數(shù)列,公差為,則,前9項之和,即,解得,所以立春的日影長為.故選:B.11、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質(zhì)12、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當時,,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項為,所以,即,所以,當時,可得,其中也滿足,所以數(shù)列的通項公式為.故答案為:;.14、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.15、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當時,兩直線分別為和,此時,兩直線不平行;當時,要使得兩直線平行,即,解得,.故答案為:16、##【解析】畫出可行域,通過平移基準直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當時,取得最大值.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設(shè)平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因為,設(shè)l與平面MND所成角為,則18、(1)在和上單調(diào)遞增,在上單調(diào)遞減;(2)證明見解析【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),再令、,分別求出函數(shù)的單調(diào)區(qū)間;(2)先求出,構(gòu)造函數(shù),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,從而證明結(jié)論【小問1詳解】解:當時,,所以,令,解得或,令,解得,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】解:,,,因為存在兩個極值點,,所以存在兩個互異的正實數(shù)根,,所以,,則,所以,所以,令,則,,,在上單調(diào)遞減,,而,即,19、(1)平均值為74.6分,中位數(shù)為75分;(2).【解析】(1)利用頻率分布直方圖平均數(shù)和中位數(shù)算法直接計算即可;(2)將學(xué)生編號,用枚舉法求解即可.【小問1詳解】依題意可知:∴綜合素質(zhì)成績的平均值為74.6分.由圖易知∵分數(shù)在50~60、60~70、70~80的頻率分別為0.12、0.18、0.40,∴中位數(shù)在70~80之間,設(shè)為,則,解得,∴綜合素質(zhì)成績的中位數(shù)為75分.【小問2詳解】設(shè)這6名同學(xué)分別為,,,,1,2,其中設(shè)1,2為文科生,從6人中選出3人,所有的可能的結(jié)果為,,,,,,,,,,,,,,,,,,,,共20種,其中含有文科學(xué)生的有,,,,,,,,,,,,,,,,共16種,∴含文科生的概率為.20、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結(jié)合裂項相消法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問2詳解】由(1)可得,所以.21、(1);(2)證明見解析.【解析】(1)設(shè)直線l的方程為:,聯(lián)立方程,利用韋達定理可得結(jié)果;(2)設(shè),借助韋達定理表示,即可得到結(jié)果.【詳解】(1)由已知可設(shè)直線l的方程為:,聯(lián)立方程組可得,設(shè),則又因為,得,故直線l的方程為:即為;(2)由題意可設(shè),可設(shè)過P的直線為聯(lián)立方程組可得,顯然設(shè),則所以所以始終被x軸平分22、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電商合同電子數(shù)據(jù)證據(jù)收集與保全操作規(guī)范3篇
- 2025-2031年中國網(wǎng)絡(luò)購物行業(yè)市場深度研究及投資策略研究報告
- 2025年度智慧城市安防系統(tǒng)承包清工勞務(wù)合同4篇
- 2025年中國醫(yī)用空氣凈化器行業(yè)發(fā)展監(jiān)測及投資規(guī)劃建議報告
- 2025年度教育資源共享平臺建設(shè)與運營合同范本4篇
- 2025年度個人二手房交易合同模板物業(yè)費繳納優(yōu)化版4篇
- 2025年貴州仁懷市供銷社股金公司招聘筆試參考題庫含答案解析
- 2025年江西有為生物技術(shù)有限公司招聘筆試參考題庫含答案解析
- 2025年四川宇客旅游開發(fā)有限公司招聘筆試參考題庫含答案解析
- 2025年江西贛州市會昌縣發(fā)展集團招聘筆試參考題庫含答案解析
- 《請柬及邀請函》課件
- 中小銀行上云趨勢研究分析報告
- 機電安裝工程安全培訓(xùn)
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語文試題(含答案)
- 青海原子城的課程設(shè)計
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動患者護理
- 英語雅思8000詞匯表
- 小學(xué)好詞好句好段摘抄(8篇)
- JT-T-1059.1-2016交通一卡通移動支付技術(shù)規(guī)范第1部分:總則
- 《茶藝文化初探》(教學(xué)設(shè)計)-六年級勞動北師大版
評論
0/150
提交評論