版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省青島第二中學(xué)高三質(zhì)量檢測(cè)試題(二)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或2.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.3.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.34.已知全集,集合,則=()A. B.C. D.5.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.6.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.7.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.8.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.69.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.10.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點(diǎn)、,O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若,i為虛數(shù)單位,則正實(shí)數(shù)的值為_(kāi)_____.14.已知二項(xiàng)式的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開(kāi)式中第四項(xiàng)的系數(shù)__________.15.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.16.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過(guò)點(diǎn)C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個(gè)直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫(xiě)出函數(shù)在上的零點(diǎn)個(gè)數(shù).18.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.19.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹(shù)或者木棉樹(shù),且種植每種樹(shù)木的概率均為.(1)現(xiàn)征求兩市居民的種植意見(jiàn),看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹(shù)300200喜歡木棉樹(shù)250250是否有的把握認(rèn)為喜歡樹(shù)木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹(shù),求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹(shù)的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)已知函數(shù).(1)討論的零點(diǎn)個(gè)數(shù);(2)證明:當(dāng)時(shí),.21.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.2、A【解析】
先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線綜合,分析題目,畫(huà)出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.3、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).4、D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.5、B【解析】
先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.6、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.7、A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡(jiǎn),可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.8、D【解析】
作,垂足為,過(guò)點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過(guò)點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.9、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.11、D【解析】
由復(fù)數(shù)除法運(yùn)算求出,再寫(xiě)出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對(duì)應(yīng)點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.12、C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點(diǎn),,,則;選C考點(diǎn):1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)模的運(yùn)算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點(diǎn)睛】本題考查復(fù)數(shù)模的運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
先令可得其展開(kāi)式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開(kāi)式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開(kāi)式的通項(xiàng)為,令,則其展開(kāi)式中的第4項(xiàng)的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)需要區(qū)分展開(kāi)式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.15、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問(wèn)題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問(wèn)題進(jìn)行分析.屬于難題.16、【解析】
分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進(jìn)一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時(shí),此時(shí),符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,.當(dāng),即時(shí),最大.故答案為:.【點(diǎn)睛】此題考查實(shí)際問(wèn)題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類討論把所有情況考慮完全,屬于一般性題目.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【解析】
(Ⅰ)求出導(dǎo)數(shù),寫(xiě)出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個(gè)零點(diǎn),,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減,故在只有唯一的一個(gè)極大值;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過(guò)導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù),進(jìn)而確定函數(shù)的單調(diào)性,屬于難題.18、(1)(2)【解析】
(1)依題意可得,再用零點(diǎn)分段法分類討論可得;(2)依題意可得對(duì)恒成立,根據(jù)絕對(duì)值的幾何意義將絕對(duì)值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當(dāng)時(shí),原不等式等價(jià)于,解得當(dāng)時(shí),原不等式等價(jià)于,解得,所以;當(dāng)時(shí),原不等式等價(jià)于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法,著重考查等價(jià)轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題.19、(1)沒(méi)有(2)分布列見(jiàn)解析,(3)證明見(jiàn)解析【解析】
(1)根據(jù)公式計(jì)算卡方值,再對(duì)應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫(xiě)出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹(shù),下面分類討論①當(dāng)時(shí),由論證.②當(dāng)時(shí),由論證.③當(dāng)時(shí),,設(shè),再論證當(dāng)時(shí),取得最小值即可.【詳解】(1)本次實(shí)驗(yàn)中,,故沒(méi)有99.9%的把握認(rèn)為喜歡樹(shù)木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對(duì)任意,有.證明:因?yàn)?,所?設(shè)個(gè)路口中有個(gè)路口種植楊樹(shù),①當(dāng)時(shí),,因?yàn)?,所以,于?②當(dāng)時(shí),,同上可得③當(dāng)時(shí),,設(shè),當(dāng)時(shí),,顯然,當(dāng)即時(shí),,當(dāng)即時(shí),,即;,因此,即.綜上,,即.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以及必然與或然思想,屬于難題.20、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)求出,分別以當(dāng),,時(shí),結(jié)合函數(shù)的單調(diào)性和最值判斷零點(diǎn)的個(gè)數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時(shí),,單調(diào)遞減,,,此時(shí)有1個(gè)零點(diǎn);當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時(shí)沒(méi)有零點(diǎn);若,則,此時(shí)有1個(gè)零點(diǎn);若,則,,求導(dǎo)易得,此時(shí)在,上各有1個(gè)零點(diǎn).綜上可得時(shí),沒(méi)有零點(diǎn),或時(shí),有1個(gè)零點(diǎn),時(shí),有2個(gè)零點(diǎn).(2)令,則,當(dāng)時(shí),;當(dāng)時(shí),,∴.令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴,∴,,∴,即.【點(diǎn)睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點(diǎn)問(wèn)題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問(wèn)題,考查了分類的數(shù)學(xué)思想.本題的難點(diǎn)在于第二問(wèn)不等式的證明中,合理設(shè)出函數(shù),通過(guò)比較最值證明.21、(1)證明見(jiàn)解析,;(2).【解析】
(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠城育華學(xué)校九年級(jí)上學(xué)期語(yǔ)文12月檢測(cè)試卷
- 廣水市九年級(jí)上學(xué)期語(yǔ)文期中考試試卷
- 八年級(jí)上學(xué)期語(yǔ)文9月月考試卷
- 高支模驗(yàn)收申請(qǐng)1
- 窗花剪紙課件教學(xué)課件
- 置業(yè)類合同(2篇)
- 《數(shù)學(xué)物理方法》 測(cè)試題及答案匯 黃志祥 第1-8章
- 辯論英文課件教學(xué)課件
- 濟(jì)南的冬天說(shuō)課稿14篇
- 南京航空航天大學(xué)《博弈與社會(huì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 氯化鈉特性表
- 鉆井井架起升鋼絲繩管理臺(tái)賬
- 單片機(jī)原理與應(yīng)用說(shuō)課
- 船舶租賃盡職調(diào)查
- GB/T 13912-2020金屬覆蓋層鋼鐵制件熱浸鍍鋅層技術(shù)要求及試驗(yàn)方法
- 植物生理學(xué)-植物的逆境生理
- 2017大專病理課件4局部血液循環(huán)障礙l
- 小學(xué)英語(yǔ)人教新起點(diǎn)五年級(jí)上冊(cè)Unit3Animalsunit3storytime
- 醫(yī)療質(zhì)量管理與持續(xù)改進(jìn)工作記錄
- 幼兒園突發(fā)事件應(yīng)急處置流程圖
- 小學(xué)《信息技術(shù)》考試試題及
評(píng)論
0/150
提交評(píng)論