2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題含解析_第1頁
2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題含解析_第2頁
2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題含解析_第3頁
2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題含解析_第4頁
2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省湖州、衢州、麗水三地市高二上數(shù)學期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或2.雙曲線的左、右焦點分別為、,點P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.3.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點.則C的方程為()A. B.C. D.4.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.5.有這樣一道題目:“戴氏善屠,日益功倍.初日屠五兩,今三十日屠訖,向共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?"在這個問題中,該屠夫前5天所屠肉的總兩數(shù)為()A.35 B.75C.155 D.3156.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-27.若雙曲線與橢圓有公共焦點,且離心率,則雙曲線的標準方程為()A. B.C. D.8.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.9.設等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.2610.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.11.函數(shù),則的值為()A B.C. D.12.日常飲用水通常都是經過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.14.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______15.不等式的解集為,則________16.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,斜率為的動直線與橢圓交于A,B兩點,且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.18.(12分)求下列函數(shù)的導數(shù).(1);(2).19.(12分)已知橢圓C:的長軸長為4,過C的一個焦點且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點,線段AB的中垂線與C交于P,Q兩點,且,求m的值20.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x經過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.21.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.22.(10分)已知四棱錐的底面是矩形,底面,且,設E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C2、C【解析】由,所以為直角三角形,根據(jù)雙曲線的定義結合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據(jù)雙曲線的定義可得所以,即,即,所以故選:C3、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結合的關系,即可求出結論.【詳解】因為雙曲線的一條漸近線方程為,則①.又因為橢圓與雙曲線有公共焦點,雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.4、A【解析】由得,為邊的中點得,設,所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設,所以,所以,當時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.5、C【解析】構造等比數(shù)列模型,利用等比數(shù)列的前項和公式計算可得結果.【詳解】由題意可得該屠夫每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此前5天所屠肉的總兩數(shù)為.故選:C.【點睛】本題考查了等比數(shù)列模型,考查了等比數(shù)列的前項和公式,屬于基礎題.6、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎題.7、A【解析】首先求出橢圓的焦點坐標,然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點坐標為所以雙曲線的焦點在軸上,,因為,所以,所以雙曲線的標準方程為故選:A8、C【解析】求出直線的斜率,結合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設這條件直線的傾斜角為,則,,因此,.故選:C.9、A【解析】根據(jù)給定條件利用韋達定理結合等差數(shù)列性質計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A10、D【解析】設AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.11、B【解析】求出函數(shù)的導數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B12、B【解析】由題意求出函數(shù)的導函數(shù),然后令即可求解【詳解】因為,所以,則,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點,連結,由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:14、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:15、【解析】由一元二次方程與一元二次不等式之間的關系可知,方程的兩根是,所以因此.考點:一元二次方程與一元二次不等式之間的關系.16、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設,所以.由題得平面,則其體對角線與底面所成角為,因為,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)設直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設,,,利用圓心到直線的距離等于半徑,得到,再聯(lián)立直線與橢圓方程,消元列出韋達定理,利用弦長公式表示出,再根據(jù)及基本不等式求出,最后再計算直線斜率不存在時三角形的面積,即可得解;【小問1詳解】解:圓,圓心為,半徑;設直線,即,則,解得,所以或;【小問2詳解】解:因為直線的斜率存在,設,,,即,則,所以,即,聯(lián)立,消元整理得,所以,,所以所以因為,所以,當且僅當,即時取等號,所以,當軸時,取,,則,此時,所以;18、(1);(2).【解析】利用導數(shù)的乘除法則,對題設函數(shù)求導即可.【小問1詳解】.【小問2詳解】19、(1);(2).【解析】(1)由題設可得且,求出,即可得橢圓方程.(2)聯(lián)立直線l和橢圓C并整理為關于x的一元二次方程,由求出m的范圍,再應用韋達定理、弦長公式求,進而可得線段AB的中垂線,同理聯(lián)立曲線C求相交弦長,再由已知條件求m值,注意其范圍.【小問1詳解】由題意知,,則,令,可得,由題設有,則,所以C的方程為【小問2詳解】聯(lián)立方程得:,由,得設,,則,,所以,另一方面,,即線段AB的中點為,所以線段AB的中垂線方程為令,聯(lián)立方程得:同理求法,可得:,即因此,解得,故20、(1)(2)3或【解析】(1)由可得,則可得直線為,設,然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關系,由可得,三個式子結合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關系表示出,再結合直線方程表示出,由AM⊥AN可得,化簡結合前面的式子可求出或,從而可可求出的值,進而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設,由,得,由,得則,因為,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問2詳解】設,由,得,由,得,則,所以,,因為AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或21、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設,則由(1)知,所以,,兩式相減,則,所以.22、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點,易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論