![白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view/1d480308ed2befd17a3aa121b94b83d5/1d480308ed2befd17a3aa121b94b83d51.gif)
![白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view/1d480308ed2befd17a3aa121b94b83d5/1d480308ed2befd17a3aa121b94b83d52.gif)
![白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view/1d480308ed2befd17a3aa121b94b83d5/1d480308ed2befd17a3aa121b94b83d53.gif)
![白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view/1d480308ed2befd17a3aa121b94b83d5/1d480308ed2befd17a3aa121b94b83d54.gif)
![白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view/1d480308ed2befd17a3aa121b94b83d5/1d480308ed2befd17a3aa121b94b83d55.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
白銀市重點中學2023年高二數(shù)學第一學期期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線實軸長為()A.1 B.C.2 D.2.已知等差數(shù)列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或103.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛(wèi)星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.24.設函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.5.設A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.06.(2016新課標全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點,點M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.27.已知正的邊長為,那么的平面直觀圖的面積為()A. B.C. D.8.已知,為雙曲線:的焦點,為,(其中為雙曲線半焦距),與雙曲線的交點,且有,則該雙曲線的離心率為()A. B.C. D.9.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.10.某四面體的三視圖如圖所示,該四面體的體積為()A. B.C. D.11.已知命題是真命題,那么的取值范圍是()A. B.C. D.12.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點,則異面直線與所成角的余弦值為______14.某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______15.以下四個關于圓錐曲線的命題中:①設A、B為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;②拋物線焦點坐標是;③過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點其中真命題的序號為______(寫出所有真命題的序號.)16.函數(shù)在點處的切線方程是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.18.(12分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.19.(12分)在平面直角坐標系xOy中,已知點、,點M滿足,記點M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點,點P為C上一個動點,求的最小值20.(12分)已知橢圓的離心率為,點在橢圓C上.(1)求橢圓C的標準方程;(2)已知直線與橢圓C交于P,Q兩點,點M是線段PQ的中點,直線過點M,且與直線l垂直.記直線與y軸的交點為N,求的取值范圍.21.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離22.(10分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由雙曲線的標準方程可求出,即可求雙曲線的實軸長.【詳解】由可得:,,即,實軸長,故選:B2、B【解析】根據(jù)題意可知等差數(shù)列是,單調遞減數(shù)列,其中,由此可知,據(jù)此即可求出結果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調遞減數(shù)列,所以,所以等差數(shù)列的前項和為取得最大值,則的值為7或8.故選:B.3、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B4、A【解析】求出函數(shù)圖象的對稱中心,結合函數(shù)圖象平移變換可得結果.【詳解】因為,所以,,所以,函數(shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A5、A【解析】先化簡A-B,發(fā)現(xiàn)其結果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運用,關鍵是通過化簡能夠發(fā)現(xiàn)其結果在形式上滿足二項式展開式,然后計算出結果,屬于基礎題6、A【解析】由已知可得,故選A.考點:1、雙曲線及其方程;2、雙曲線的離心率.【方法點晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計算量,提高解題速度.7、D【解析】作出正的實際圖形和直觀圖,計算出直觀圖的底邊上的高,由此可求得的面積.【詳解】如圖①②所示的實際圖形和直觀圖.由斜二測畫法可知,,,在圖②中作于,則.所以.故選:D.【點睛】本題考查直觀圖面積的計算,考查計算能力,屬于基礎題.8、B【解析】根據(jù)求得的關系,結合雙曲線的定義以及勾股定理,即可求得的等量關系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.9、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.10、A【解析】可由三視圖還原原幾何體,然后根據(jù)題意的邊角關系,完成體積的求解.【詳解】由三視圖還原原幾何體如圖:其中平面,,則該四面體的體積為.故選:A.11、C【解析】依據(jù)題意列出關于的不等式,即可求得的取值范圍.【詳解】當時,僅當時成立,不符合題意;當時,若成立,則,解之得綜上,取值范圍是故選:C12、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立如圖所示的空間直角坐標系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因為平面與平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標系,則,故,,故.故答案為:14、【解析】將每個矩形底邊的中點值乘以對應矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.15、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點判斷命題②;分析點P滿足的關系判斷命題③;按取值討論計算半焦距判斷命題④作答.【詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點坐標是,命題②正確;對于③,令定圓C的圓心為C,因,則點P是弦AB的中點,當P與C不重合時,有,點P在以線段AC為直徑的圓上,當P與C重合時,點P也在以線段AC為直徑的圓上,因此,動點P的軌跡是以線段AC為直徑的圓(除A點外),則命題③不正確;對于④,曲線的焦點為,當時,橢圓中半焦距c滿足:,其焦點為,當時,雙曲線中半焦距滿足:,其焦點為,因此曲線與曲線(且)有相同的焦點,命題④正確,所以真命題的序號為②④.故答案為:②④【點睛】易錯點睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關系式:;雙曲線的實半軸長、虛半軸長、半焦距分別為、、滿足關系式:,在同一問題中出現(xiàn)認真區(qū)分,不要混淆.16、【解析】求得函數(shù)的導數(shù),得到且,再結合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3(2),【解析】(1)先求出函數(shù)的導數(shù),根據(jù)極值點可得導數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調遞增,在上單調遞減,故在上為增函數(shù),在上為減函數(shù),.又18、(1);(2).【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,設平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因為平面,所以,平面,,所以,直線到平面的距離為.19、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設,利用向量坐標運算計算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點、為左、右焦點的雙曲線的右支,設軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設,則,且,圓心,則因為,則當時,取最小值23.20、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達定理可用表示,利用換元法和二次函數(shù)的性質可求的取值范圍.小問1詳解】由題意可得,解得,.故橢圓C的標準方程為.【小問2詳解】設,,.聯(lián)立,整理得,則,解得,從而,.因為M是線段PQ的中點,所以,則,故.直線的方程為,即.令,得,則,所以.設,則,故.因為,所以,所以.21、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質可證得結論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設點到平面的距離為,,,解得.因此,點到平面距離為.22、(1);(2)證明見解析【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 1-3-Dieicosenoyl-glycerol-生命科學試劑-MCE-8506
- 二零二五年度上市公司員工持股協(xié)議轉讓易主合同
- 二零二五年度兒童教育機構門店聯(lián)營合作協(xié)議
- 二零二五年度船舶轉讓手續(xù)辦理與船舶交易評估與代理服務協(xié)議
- 2025年度足療技師星級評定與聘用合同
- 2025年度二零二五年度道路運輸項目投資合作協(xié)議
- 施工現(xiàn)場交通管制制度
- 社區(qū)護理實踐兒童急癥的處理以小兒急性喉炎為例
- 模擬卷高考復習科技文閱讀教學設計
- 個人貨款合同示例
- 2025年度院感管理工作計劃(后附表格版)
- 勵志課件-如何做好本職工作
- 化肥銷售工作計劃
- 2024浙江華數(shù)廣電網(wǎng)絡股份限公司招聘精英18人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年山東省濟南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務規(guī)范考試題庫
- 2025中考英語作文預測:19個熱點話題及范文
- 第10講 牛頓運動定律的綜合應用(一)(講義)(解析版)-2025年高考物理一輪復習講練測(新教材新高考)
- 靜脈治療護理技術操作標準(2023版)解讀 2
- 2024年全國各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
評論
0/150
提交評論