![安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁](http://file4.renrendoc.com/view/a2d9196c3270d24c8b5815135ac7216e/a2d9196c3270d24c8b5815135ac7216e1.gif)
![安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁](http://file4.renrendoc.com/view/a2d9196c3270d24c8b5815135ac7216e/a2d9196c3270d24c8b5815135ac7216e2.gif)
![安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁](http://file4.renrendoc.com/view/a2d9196c3270d24c8b5815135ac7216e/a2d9196c3270d24c8b5815135ac7216e3.gif)
![安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁](http://file4.renrendoc.com/view/a2d9196c3270d24c8b5815135ac7216e/a2d9196c3270d24c8b5815135ac7216e4.gif)
![安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁](http://file4.renrendoc.com/view/a2d9196c3270d24c8b5815135ac7216e/a2d9196c3270d24c8b5815135ac7216e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省示范性高中培優(yōu)聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點坐標(biāo)為A. B.C. D.2.設(shè),則“”是“直線與直線”平行的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件3.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米4.已知命題P:,,則命題P的否定為()A., B.,C., D.,5.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.6.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.7.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.8.已知雙曲線的左焦點為,,為雙曲線的左、右頂點,漸近線上的一點滿足,且,則雙曲線的離心率為()A. B.C. D.9.?dāng)?shù)列,,,,…,的通項公式可能是()A. B.C. D.10.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.11.已知曲線C的方程為,則下列結(jié)論正確的是()A.當(dāng)時,曲線C為圓B.“”是“曲線C為焦點在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點在x軸上的橢圓”的必要而不充分條件D.存在實數(shù)k使得曲線C為雙曲線,其離心率為12.已知直線與直線垂直,則實數(shù)a為()A. B.或C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.在正項等比數(shù)列中,,,則的公比為___________.14.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數(shù)m的值為________.15.圓被直線所截得弦的最短長度為___________.16.曲線在點處的切線方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)長方體中,,點分別在上,且.(1)求證:平面;(2)求平面與平面所成角的余弦值.18.(12分)已知函數(shù),數(shù)列的前n項和為,且對一切正整數(shù)n、點都在因數(shù)的圖象上(1)求數(shù)列的通項公式;(2)令,數(shù)列的前n項和,求證:19.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個頂點坐標(biāo)分別為(1)求邊的垂直平分線所在的直線的方程;(2)若面積為5,求點的坐標(biāo)20.(12分)已知雙曲線中心在原點,離心率為2,一個焦點(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點,且過點F、Q的直線l與y軸交于點M,若,求直線l的方程21.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值22.(10分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關(guān)系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】拋物線的標(biāo)準(zhǔn)方程為,從而可得其焦點坐標(biāo)【詳解】拋物線的標(biāo)準(zhǔn)方程為,故其焦點坐標(biāo)為,故選D.【點睛】本題考查拋物線的性質(zhì),屬基礎(chǔ)題2、D【解析】由兩直線平行確定參數(shù)值,根據(jù)充分必要條件的定義判斷【詳解】時,兩直線方程分別為,,它們重合,不平行,因此不是充分條件;反之,兩直線平行時,,解得或,由上知時,兩直線不平行,時,兩直線方程分別為,,平行,因此,本題中也不是必要條件故選:D3、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.4、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B5、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A6、B【解析】取中點為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計算外接球半徑,最后根據(jù)球表面積公式計算.【詳解】設(shè)中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B7、C【解析】根據(jù)所給的圖形和一組基底,從起點出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發(fā),沿著空間圖形的棱走到終點,若出現(xiàn)不是基底中的向量的情況,再重復(fù)這個過程,屬于基礎(chǔ)題8、C【解析】由雙曲線的漸近線方程和兩點的距離公式,求得點的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點在第一象限內(nèi),由,解得,即點,所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.9、D【解析】利用數(shù)列前幾項排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項公式可以為,故選:D10、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B11、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當(dāng)時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當(dāng)曲線C的方程為表示焦點在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當(dāng)曲線C的方程為表示焦點在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當(dāng)曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.12、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:314、1【解析】由兩條直線垂直可知,進(jìn)而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.15、【解析】首先確定直線所過定點;由圓的方程可確定圓心和半徑,進(jìn)而求得圓心到的距離,由此可知所求最短長度為.【詳解】由得:,直線恒過點;,在圓內(nèi);又圓的圓心為,半徑,圓心到點的距離,所截得弦的最短長度為.故答案為:.16、【解析】先驗證點在曲線上,再求導(dǎo),代入切線方程公式即可【詳解】由題,當(dāng)時,,故點在曲線上求導(dǎo)得:,所以故切線方程為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2)【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)以為坐標(biāo)原點,分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,由面面角的空間向量求解方法可得答案.【小問1詳解】證明:長方體中,平面,又平面,又平面,又平面同理可證,而平面,平面【小問2詳解】解:以為坐標(biāo)原點,分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系.從而,,,由(1)知,為平面的一個法向量,設(shè)平面的法向量為,則,,則,從而,令,則,得平面的一個法向量為由圖示得平面與平面所成的角為銳角,平面與平面所成的角的余弦值為18、(1)(2)證明見解析【解析】(1)根據(jù)數(shù)列中和的關(guān)系,即可解出;(2)利用裂項相消法求出,即可進(jìn)一步汽車其范圍.【小問1詳解】由題知,當(dāng)時,,當(dāng)時,也滿足上式,綜上,;【小問2詳解】,則,由,得,所以.19、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點斜式求直線的方程(2)根據(jù)面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點到直線的距離為且解得解得或,點的坐標(biāo)為或20、(1)(2)或【解析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點,∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時,,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時,,代入雙曲線可得:,∴綜上所求直線l的方程為:或21、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標(biāo)系,則,,,因為分別為的中點,所以.所以,.設(shè)平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.22、(1)選①:外離;選②:相切;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同樣例舞臺燈光音響租賃合同范本
- 2024春八年級語文下冊 第1單元 2回延安說課稿 新人教版
- 5草船借箭說課稿-2023-2024學(xué)年五年級下冊語文統(tǒng)編版
- Unit1 Making friends(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2024-2025學(xué)年高中化學(xué) 第一章 物質(zhì)結(jié)構(gòu)元素周期律 第一節(jié) 元素周期表第3課時說課稿3 新人教版必修2
- 寫結(jié)算傭金合同范例
- 劃撥土地房屋購買合同范例
- 產(chǎn)品購售合同范例
- 農(nóng)產(chǎn)品預(yù)付款合同范例
- 2024年01月江西2024年江西銀行贛州分行招考筆試歷年參考題庫附帶答案詳解
- 17~18世紀(jì)意大利歌劇探析
- 微課制作技術(shù)與技巧要點
- β內(nèi)酰胺類抗生素與合理用藥
- 何以中國:公元前2000年的中原圖景
- 第一章:公共政策理論模型
- 中藥審核處方的內(nèi)容(二)
- (完整)金正昆商務(wù)禮儀答案
- RB/T 101-2013能源管理體系電子信息企業(yè)認(rèn)證要求
- GB/T 4513.7-2017不定形耐火材料第7部分:預(yù)制件的測定
- GB/T 10205-2009磷酸一銨、磷酸二銨
- 公司財務(wù)制度及流程
評論
0/150
提交評論