安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省蕪湖一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,且,則值是()A. B.C. D.2.?dāng)?shù)列1,6,15,28,45,…中的每一項(xiàng)都可用如圖所示的六邊形表示出米,故稱它們?yōu)榱呅螖?shù),那么第11個六邊形數(shù)為()A.153 B.190C.231 D.2763.設(shè)等差數(shù)列的前n項(xiàng)和為.若,則()A.19 B.21C.23 D.384.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標(biāo)原點(diǎn)對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③5.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.6.試在拋物線上求一點(diǎn),使其到焦點(diǎn)的距離與到的距離之和最小,則該點(diǎn)坐標(biāo)為A. B.C. D.7.橢圓的長軸長是()A.3 B.6C.9 D.48.橢圓離心率是()A. B.C. D.9.設(shè)函數(shù)若函數(shù)有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是()A. B.C. D.10.已知E、F分別為橢圓的左、右焦點(diǎn),傾斜角為的直線l過點(diǎn)E,且與橢圓交于A,B兩點(diǎn),則的周長為A.10 B.12C.16 D.2011.動點(diǎn)到兩定點(diǎn),的距離和是,則動點(diǎn)的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定12.命題“”的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓與圓的位置關(guān)系為______(填相交,相切或相離).14.已知數(shù)列滿足(),設(shè)數(shù)列滿足:,數(shù)列的前項(xiàng)和為,若()恒成立,則的取值范圍是________15.對于實(shí)數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則___________.16.已知數(shù)列的通項(xiàng)公式為,,設(shè)是數(shù)列的前n項(xiàng)和,若對任意都成立,則實(shí)數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓內(nèi)有一點(diǎn),過點(diǎn)P作直線l交圓C于A,B兩點(diǎn).(1)當(dāng)P為弦的中點(diǎn)時,求直線l的方程;(2)若直線l與直線平行,求弦的長.18.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時,證明,,;(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.19.(12分)已知雙曲線的左、右焦點(diǎn)分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.20.(12分)已知函數(shù),且a0(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點(diǎn),①求實(shí)數(shù)a的取值范圍;②證明:21.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點(diǎn)E,F(xiàn)分別在棱,上,且,(1)證明:點(diǎn)在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值22.(10分)已知圓C的圓心在直線上,且經(jīng)過點(diǎn)和(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線l與圓C交于A,B兩點(diǎn),且,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄浚?,所以,,因?yàn)?,所以,解得:,故選:A.2、C【解析】細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形即可求解.【詳解】由題意知,數(shù)列的各項(xiàng)為1,6,15,28,45,...所以,,,,,,所以.故選:C3、A【解析】由已知及等差數(shù)列的通項(xiàng)公式得到公差d,再利用前n項(xiàng)和公式計算即可.【詳解】設(shè)等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A4、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標(biāo)原點(diǎn)對稱所以①正確,當(dāng)時,曲線的方程化為,此時當(dāng)時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時,設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點(diǎn)在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D5、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因?yàn)?,所?a2=9b2,所以故選:D.6、A【解析】由題意得拋物線的焦點(diǎn)為,準(zhǔn)線方程為過點(diǎn)P作于點(diǎn),由定義可得,所以,由圖形可得,當(dāng)三點(diǎn)共線時,最小,此時故點(diǎn)的縱坐標(biāo)為1,所以橫坐標(biāo).即點(diǎn)P的坐標(biāo)為.選A點(diǎn)睛:與拋物線有關(guān)的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化(1)將拋物線上的點(diǎn)到準(zhǔn)線的距離轉(zhuǎn)化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用“與直線上所有點(diǎn)的連線中的垂線段最短”解決7、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B8、C【解析】將方程轉(zhuǎn)化為橢圓的標(biāo)準(zhǔn)方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.9、D【解析】有兩個零點(diǎn)等價于與的圖象有兩個交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點(diǎn)等價于與的圖象有兩個交點(diǎn),畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點(diǎn),此時,函數(shù)有兩個零點(diǎn),實(shí)數(shù)m的取值范圍是,故選:D.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)10、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點(diǎn)睛】本題考查橢圓簡單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長的求法,屬于基本知識的考查11、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點(diǎn)的軌跡為橢圓,故選:A12、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】求兩圓圓心距,并與半徑之和、半徑之差的絕對值比較即可.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,∵,∴兩圓相交.故答案為:相交.14、【解析】先由條件求出的通項(xiàng)公式,得到,由裂項(xiàng)相消法再求出,根據(jù)不等式恒成立求出參數(shù)的范圍即可.【詳解】當(dāng)時,有當(dāng)時,由①有②由①-②得:所以,當(dāng)時也成立.所以,故則由,即,所以所以,由所以故答案為:【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和以及數(shù)列不等式問題,屬于中檔題.15、54【解析】由,利用裂項(xiàng)相消法求得,再由的定義求解.【詳解】由已知可得:,,當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,;;所以.故答案為:54.16、【解析】化簡數(shù)列將問題轉(zhuǎn)化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進(jìn)行討論,分別求解出的取值范圍,最后綜合得出結(jié)果.【詳解】根據(jù)題意,,.①當(dāng)n是奇數(shù)時,,即對任意正奇數(shù)n恒成立,當(dāng)時,有最小值1,所以.②當(dāng)n是正偶數(shù)時,,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當(dāng)時,有最小值,即,綜合①②可知.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意,,求出直線l的斜率,利用點(diǎn)斜式即可求解;(2)由題意,利用點(diǎn)斜式求出直線l的方程,然后由點(diǎn)到直線的距離公式求出弦心距,最后根據(jù)弦長公式即可求解.小問1詳解】解:由題意,圓心,P為弦的中點(diǎn)時,由圓的性質(zhì)有,又,所以,所以直線l的方程為,即;【小問2詳解】解:因?yàn)橹本€l與直線平行,所以,所以直線的方程為,即,因?yàn)閳A心到直線的距離,又半徑,所以由弦長公式得.18、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點(diǎn),則在上有根.再分,與,利用函數(shù)的零點(diǎn)存在定理討論導(dǎo)函數(shù)的零點(diǎn)即可.【詳解】(1)證明:當(dāng)時,,則,當(dāng)時,,則,又因?yàn)?所以當(dāng)時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因?yàn)?所以,①當(dāng)時,恒成立,所以在上單調(diào)遞增,沒有極值點(diǎn).②當(dāng)時,在區(qū)間上單調(diào)遞增,因?yàn)?當(dāng)時,,所以在上單調(diào)遞減,沒有極值點(diǎn).當(dāng)時,,所以存在,使當(dāng)時,時,所以在處取得極小值,為極小值點(diǎn).綜上可知,若函數(shù)在上存在極值點(diǎn),則實(shí)數(shù).【點(diǎn)睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點(diǎn)的問題,需要結(jié)合零點(diǎn)存在定理求解.屬于難題.19、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點(diǎn)的坐標(biāo),再用兩點(diǎn)之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點(diǎn)之間的距離公式,即可求得三角形周長.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知雙曲線的左、右焦點(diǎn)坐標(biāo)分別為、,直線的方程,與聯(lián)立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長為.20、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個實(shí)數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當(dāng)a=1時,函數(shù)因?yàn)樗院瘮?shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個實(shí)數(shù)根記,則.當(dāng)時,,函數(shù)k(x)是增函數(shù);當(dāng)時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當(dāng)x1時,,故.由(1)可知,當(dāng)0x1時,,所以2lnxx?由,得,所以因?yàn)?,所?1、(1)證明見解析;(2).【解析】(1)設(shè)、、、AC與BD的交點(diǎn)為O,由直四棱柱的性質(zhì)構(gòu)建空間直角坐標(biāo)系,確定、的坐標(biāo)可得,即可證結(jié)論.(2)由題設(shè),求出、、的坐標(biāo),進(jìn)而求得面BEF的法向量,利用空間向量夾角的坐標(biāo)表示求直線與平面BEF所成角的正弦值【小問1詳解】由題意,,設(shè),,,設(shè)AC與BD的交點(diǎn)為O,以O(shè)為坐標(biāo)原點(diǎn),分別以BD,AC所在直線為x,y軸建立如下空間直角坐標(biāo)系,則,,,,所以,,得,即,因此點(diǎn)在平面BEF內(nèi)【小問2詳解】由(1)及題設(shè),,,,,所以,,設(shè)為平面BEF的法向量,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論