版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省蕪湖市鏡湖區(qū)師范大學(xué)附中2023-2024學(xué)年數(shù)學(xué)高二上期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的光學(xué)性質(zhì)為:如圖①,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點(diǎn).我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)和點(diǎn)反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.2.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.3.若,則與的大小關(guān)系是()A. B.C. D.不能確定4.若在直線上,則直線的一個(gè)方向向量為()A. B.C. D.5.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.7.拋物線上有兩個(gè)點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.8.橢圓C:的焦點(diǎn)為,,點(diǎn)P在橢圓上,若,則的面積為()A.48 B.40C.28 D.249.?dāng)?shù)列,,,,…的一個(gè)通項(xiàng)公式為()A. B.C. D.10.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.11.已知雙曲線的兩個(gè)焦點(diǎn),,是雙曲線上一點(diǎn),且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.12.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.33二、填空題:本題共4小題,每小題5分,共20分。13.某甲、乙兩人練習(xí)跳繩,每人練習(xí)10組,每組不間斷跳繩計(jì)數(shù)的莖葉圖如圖,則下面結(jié)論中所有正確的序號(hào)是___________.①甲比乙的極差大;②乙的中位數(shù)是18;③甲的平均數(shù)比乙的大;④乙的眾數(shù)是21.14.如圖,將一個(gè)正方體沿相鄰三個(gè)面的對(duì)角線截出一個(gè)棱錐,若該棱錐的體積為,則該正方體的體對(duì)角線長為___________.15.下方莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________16.已知函數(shù),若,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示的四棱錐的底面是一個(gè)等腰梯形,,且,是△的中線,點(diǎn)E是棱的中點(diǎn)(1)證明:∥平面(2)若平面平面,且,求平面與平面夾角余弦值(3)在(2)條件下,求點(diǎn)D到平面的距離18.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值19.(12分)已知橢圓C:()的離心率為,并且經(jīng)過點(diǎn),(1)求橢圓C的方程;(2)設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)為橢圓C上任意一點(diǎn),直線的斜率分別為,,求證:為定值20.(12分)已知橢圓C經(jīng)過,兩點(diǎn)(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線l與C交于P,Q兩點(diǎn),M是PQ的中點(diǎn),O是坐標(biāo)原點(diǎn),,求證:的邊PQ上的高為定值21.(12分)在一次重大軍事聯(lián)合演習(xí)中,以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點(diǎn)正北方向海里處有一個(gè)雷達(dá)觀測站,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置,經(jīng)過小時(shí)又測得該船已行駛到位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置(1)求該船的行駛速度(單位:海里/小時(shí));(2)該船能否不改變方向繼續(xù)直線航行?請(qǐng)說明理由22.(10分)北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來每件售價(jià)為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】連接,已知條件為,,設(shè),由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應(yīng)用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),,則,由得,,又,所以,,所以,所以,由得,因?yàn)?,故解得,則,在中,,即,所以故選:C2、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對(duì)稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C3、B【解析】由題知,進(jìn)而研究的符號(hào)即可得答案.詳解】解:,所以,即.故選:B4、D【解析】由題意可得首先求出直線上的一個(gè)向量,即可得到它的一個(gè)方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個(gè)方向向量,又∵,∴是直線的一個(gè)方向向量故選:D5、A【解析】對(duì)函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時(shí),,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時(shí),,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.6、A【解析】根據(jù)平面,平面求解.【詳解】因?yàn)槠矫?,平面,所以,又,,,所?所以,故選:A7、B【解析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.8、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計(jì)算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D9、B【解析】根據(jù)給定數(shù)列,結(jié)合選項(xiàng)提供通項(xiàng)公式,將n代入驗(yàn)證法判斷是否為通項(xiàng)公式.【詳解】A:時(shí),排除;B:數(shù)列,,,,…滿足.C:時(shí),排除;D:時(shí),排除;故選:B10、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.11、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D12、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①③④【解析】根據(jù)莖葉圖提供的數(shù)據(jù)求出相應(yīng)的極差、中位數(shù)、均值、眾數(shù)再判斷【詳解】由莖葉圖,甲的極差是37-8=29,乙的極差是23-9=14,甲極差大,①正確;乙中位數(shù)是,②錯(cuò);甲平均數(shù)是:,乙的平均數(shù)為:16.9,③正確;乙的眾數(shù)是21,④正確故答案為:①③④14、.【解析】先根據(jù)棱錐的體積求出正方體的棱長,進(jìn)而求出正方體的體對(duì)角線長.【詳解】如圖,連接,設(shè)正方體棱長為,則.所以,體對(duì)角線.故答案為:.15、9【解析】閱讀莖葉圖,由甲組數(shù)據(jù)的中位數(shù)為可得,乙組的平均數(shù):,解得:,則:點(diǎn)睛:莖葉圖的繪制需注意:(1)“葉”的位置只有一個(gè)數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一;(2)重復(fù)出現(xiàn)的數(shù)據(jù)要重復(fù)記錄,不能遺漏,特別是“葉”的位置的數(shù)據(jù)16、【解析】求出導(dǎo)函數(shù),確定導(dǎo)函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)連接、,平行四邊形的性質(zhì)、線面平行的判定可得平面、平面,再根據(jù)面面平行的判定可得平面平面,利用面面平行的性質(zhì)可證結(jié)論;(2)取的中點(diǎn)為,連接,證明出平面,,以為坐標(biāo)原點(diǎn),、、的方向分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值.(3)利用等體積法,求D到平面的距離【小問1詳解】連接、,由、分別是棱、的中點(diǎn),則,平面,平面,則平面又,且,∴且,四邊形是平行四邊形,則,平面,平面,則平面又,可得平面平面.又平面∴平面【小問2詳解】由知:,又平面平面,平面平面,平面,∴平面取的中點(diǎn)為,連接、,由且,故四邊形為平行四邊形,故,則△為等邊三角形,故,以為坐標(biāo)原點(diǎn),、、的方向分別為軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系易知,,所以、、、、,,,,設(shè)平面的法向量為,則,令,得設(shè)平面的法向量為,則,令,得設(shè)平面與平面所成的銳二面角為.則,即平面與平面所成銳二面角的余弦值為【小問3詳解】由(2)知:平面,則是三棱錐的高且,四邊形為平行四邊形,又,即為菱形,∴,而,則,且,∴,故.又,由上易知:△為等腰三角形且,∴,則D到平面的距離.18、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴19、(1)(2)證明見解析【解析】(1)根據(jù)題意可列出關(guān)于的三個(gè)方程,解出即可得到橢圓C的方程;(2)根據(jù)對(duì)稱可得點(diǎn)坐標(biāo),再根據(jù)斜率公式可得,然后由點(diǎn)為橢圓C上的點(diǎn)得,代入化簡即可求出為定值【小問1詳解】由題意解得,.所以橢圓C的方程為.【小問2詳解】因?yàn)辄c(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,所以的坐標(biāo)為.,,所以,又因?yàn)辄c(diǎn)為橢圓C上的點(diǎn),所以.20、(1)(2)證明見解析【解析】(1)設(shè)出橢圓方程,根據(jù)的坐標(biāo)求得橢圓方程.(2)對(duì)直線的斜率分成存在和不存在兩種情況進(jìn)行分類討論,求得的邊PQ上的高來證得結(jié)論成立.【小問1詳解】設(shè)橢圓方程為,將坐標(biāo)代入得,所以橢圓方程為.小問2詳解】當(dāng)直線的斜率不存在時(shí),關(guān)于軸對(duì)稱,由于,所以,即,直線與橢圓有兩個(gè)交點(diǎn),符合題意.所以的邊PQ上的高為.當(dāng)直線的斜率不存在時(shí),設(shè)直線的方程為,由消去并化簡得①,設(shè),則,.由于M是PQ的中點(diǎn)且,所以,所以,即,,,.此時(shí)①的.原點(diǎn)到直線的距離為.綜上所述,的邊PQ上的高為定值21、(1)海里/小時(shí);(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立平面直角坐標(biāo)系,計(jì)算出,即可求得該船的行駛速度;(2)求出直線的方程,計(jì)算出點(diǎn)到直線的距離,可得出結(jié)論.【小問1詳解】解:設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標(biāo)系,則坐標(biāo)平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時(shí).【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點(diǎn)到直線的距離為,所以直線會(huì)與以為圓心,以個(gè)單位長為半徑的圓相交,因此該船要改變航行方向,否則會(huì)進(jìn)入警戒區(qū)域22、(1)40;(2)a至少達(dá)到10.2萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.【解析】(1)設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度雪花啤酒智能家居產(chǎn)品代理合作合同范本3篇
- 2025年度個(gè)人養(yǎng)老保險(xiǎn)補(bǔ)充合同范本2篇
- 2025年度個(gè)人信用擔(dān)保服務(wù)協(xié)議3篇
- 2025年度個(gè)性化個(gè)人家政服務(wù)合同范本(定制服務(wù))4篇
- 異地書店買賣合同(2篇)
- 高端鈦鍋:烹飪藝術(shù)革新科技與健康的融合 頭豹詞條報(bào)告系列
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫及答案(網(wǎng)校專用) (一)
- 2025年度智能門窗定制服務(wù)合同4篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫【考試直接用】
- 遮光式計(jì)數(shù)器課程設(shè)計(jì)
- 湖北省黃石市陽新縣2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)期末考試題 含答案
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報(bào)告
- 央視網(wǎng)2025亞冬會(huì)營銷方案
- 《無砟軌道施工與組織》 課件 第十講雙塊式無砟軌道施工工藝
- 江蘇省南京市、鹽城市2023-2024學(xué)年高三上學(xué)期期末調(diào)研測試+英語+ 含答案
- 2024新版《藥品管理法》培訓(xùn)課件
- 《阻燃材料與技術(shù)》課件 第7講 阻燃橡膠材料
- 國家開放大學(xué)學(xué)生成績單
- 船員外包服務(wù)投標(biāo)方案
- 沉積相及微相劃分教學(xué)課件
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)五 引發(fā)用戶共鳴外部條件的把控
評(píng)論
0/150
提交評(píng)論