版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市第一中學2024屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.2.下列命題中正確的是()A.函數(shù)最小值為2.B.函數(shù)的最小值為2.C.函數(shù)的最小值為D.函數(shù)的最大值為3.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.4.設F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.95.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.6.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.7.已知函數(shù)的圖象是下列四個圖象之一,且其導函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.8.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.9.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.1410.中,內(nèi)角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.11.已知命題,,則A., B.,C., D.,12.已知正實數(shù)滿足,則的最小值為()A. B.9C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次實驗得到如下7組數(shù)據(jù),通過判斷知道與具有線性相關性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.814.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為________.15.從甲、乙、丙、丁4位同學中,選出2位同學分別擔任正、副班長的選法數(shù)可以用表示為____________.16.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,為數(shù)列的前n項和,①求;②若不等式對任意的正整數(shù)n恒成立,求實數(shù)的取值范圍18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.19.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點,將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點,求直線DE與平面PBD所成角的正弦值20.(12分)在如圖三角形數(shù)陣中第n行有n個數(shù),表示第i行第j個數(shù),例如,表示第4行第3個數(shù).該數(shù)陣中每一行的第一個數(shù)從上到下構成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.21.(12分)已知雙曲線的右焦點與拋物線的焦點相同,且過點.(1)求雙曲線漸近線方程;(2)求拋物線的標準方程.22.(10分)如圖,在三棱錐中,平面,,,為的中點.(1)證明:平面;(2)求平面與平面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意結(jié)合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.2、D【解析】根據(jù)基本不等式知識對選項逐一判斷【詳解】對于A,時為負值,故A錯誤對于B,,而無解,無法取等,故B錯誤對于,當且僅當即時等號成立,故,D正確,C錯誤故選:D3、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A4、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當且僅當三點共線時,取得等號.故選:B5、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設,聯(lián)立直線和拋物線方程得,所以.所以.故選:B6、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當時,,,當時,,,綜上所述,的取值范圍為,故選:A7、A【解析】利用導數(shù)與函數(shù)的單調(diào)性之間的關系及導數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.8、B【解析】由題設可得,又,易知,,將問題轉(zhuǎn)化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構成等邊三角形,即可將問題轉(zhuǎn)化為圓上動點到射線的距離最短問題.9、C【解析】假設公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).10、A【解析】由題得,進而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A11、A【解析】根據(jù)全稱命題與特稱命題互為否定的關系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題12、A【解析】根據(jù),將式子化為,進而化簡,然后結(jié)合基本不等式求得答案.【詳解】因為,所以,當且僅當,即時取等號,所以的最小值為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、9##【解析】求得樣本中心點的坐標,代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.14、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因為該組數(shù)據(jù)的極差為5,,所以,解得.因為,所以該組數(shù)據(jù)的方差為故答案為:.15、【解析】由題意知:從4為同學中選出2位進行排列,即可寫出表示方式.【詳解】1、從4位同學選出2位同學,2、把所選出的2位同學任意安排為正、副班長,∴選法數(shù)為.故答案為:.16、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項公式,從而得到的通項公式;(2)①由(1)可得,再利用錯位相減法求和即可;②利用作差法證明的單調(diào)性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當時,可得,解得,當時,,又,兩式相減得,所以,所以,即,則數(shù)列是首項為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調(diào)遞增,所以,因為不等式對任意的正整數(shù)n恒成立,所以,即,解得或,即18、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,求出的坐標以及平面的一個法向量,計算即可求解;(2)假設線段上存在點符合題意,設可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,如圖所示:則,,,.不妨設平面的一個法向量,則有,即,取.設直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設線段上存在點,使得二面角的余弦值.設,則,從而,,.設平面的法向量,則有,即,取.設平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1)證明見解析;(2).【解析】(1)推導出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標原點,建立如圖空間直角坐標系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因為點A、D分別為MB、MC中點,所以,又,所以,所以.因為,所以,又,所以平面,又平面,所以平面平面;【小問2詳解】因為,,,所以兩兩垂直,以A為坐標原點,建立如圖空間直角坐標系,,則,設平面的一個法向量為,則,令,得,所以,設直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.20、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項公式求出,再利用錯位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當時,,又,,滿足,,,兩式相減得,.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構,其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構,利用分組求和法;(4)對于結(jié)構,其中是等差數(shù)列,公差為,則,利用裂項相消法求和.21、(1)(2)【解析】(1)將已知點代入雙曲線方程,然后可得;(2)由雙曲線右焦點與拋物線的焦點相同可解.【小問1詳解】因為雙曲線過點,所以所以,得又因為,所以所以雙曲線的漸近線方程【小問2詳解】由(1)得所以所以雙曲線的右焦點是所以拋物線的焦點是所以,所以所以拋物線的標準方程22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力設施建設聘用合同
- 人力資源公司租賃定金合同協(xié)議
- 生態(tài)園生態(tài)能源利用中心建設協(xié)議
- 藝術品經(jīng)營服務合同
- 民宿買賣合同
- 專利分戶口協(xié)議書
- 教育機構自來水系統(tǒng)協(xié)議
- 電器維修雜工招聘合同
- 扁桃體吸引管培訓手冊
- 漢堡店管理培訓
- 管理能力與領導力管理培訓
- 2023上半年四川公務員考試申論試題(省市卷)
- 2024年度專業(yè)會務組織服務協(xié)議書版
- 函數(shù)的圖象及變換省公開課獲獎課件說課比賽一等獎課件
- 2020-2021學年河南省洛陽市高一上學期期中考試化學試題
- 四年級上冊語文第六單元任務群教學設計
- 2024-2025學年北師大版九年級數(shù)學上冊期中培優(yōu)試題
- 《高血壓科普知識》課件
- 《建筑工程設計文件編制深度規(guī)定》(2022年版)
- 心理咨詢中知情同意的倫理困境與解決途徑
- 山地光伏除草施工方案
評論
0/150
提交評論