版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省安平中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.2.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=13.已知向量,且,則的值為()A.4 B.2C.3 D.14.已知橢圓的右焦點(diǎn)為,則正數(shù)的值是()A.3 B.4C.9 D.215.在區(qū)間內(nèi)隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.6.已知正方形ABCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),分別沿AE,AF將三角形ADE,ABF折起,使得點(diǎn)B,D恰好重合,記為點(diǎn)P,則AC與平面PCE所成角等于()A. B.C. D.7.已知向量,,且,則實(shí)數(shù)等于()A1 B.2C. D.8.已知橢圓上一點(diǎn)到左焦點(diǎn)的距離為,是的中點(diǎn),則()A.1 B.2C.3 D.49.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)10.將的展開(kāi)式按x的降冪排列,第二項(xiàng)不大于第三項(xiàng),若,且,則實(shí)數(shù)x的取值范圍是()A. B.C. D.11.在某次賽車(chē)中,名參賽選手的成績(jī)(單位:)全部介于到之間(包括和),將比賽成績(jī)分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績(jī)?cè)趦?nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.12.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線經(jīng)過(guò)點(diǎn),則__________.14.已知點(diǎn),為拋物線:上不同于原點(diǎn)的兩點(diǎn),且,則的面積的最小值為_(kāi)_________.15.已知圓,直線與圓C交于A,B兩點(diǎn),且,則______16.過(guò)橢圓的右焦點(diǎn)作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點(diǎn),直線n與橢圓交于C,D兩點(diǎn),若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫(xiě)出所有正確答案的序號(hào))三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)橢圓的左右焦點(diǎn)分別為,,焦距為,為原點(diǎn).橢圓上任意一點(diǎn)到,距離之和為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的斜率為2的直線交橢圓于、兩點(diǎn),求的面積.18.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.19.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值20.(12分)已知函數(shù),.(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間上有唯一的零點(diǎn).(?。┣蟮娜≈捣秶唬áⅲ┳C明:.21.(12分)已知p:方程所表示的曲線為焦點(diǎn)在x軸上的橢圓;q:當(dāng)時(shí),函數(shù)恒成立.(1)若p為真,求實(shí)數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)t的取值范圍22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若與相交于A、兩點(diǎn),設(shè),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).2、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題3、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因?yàn)?,所以,因?yàn)橄蛄?,,所以,解得,所以的值為,故選:A.4、A【解析】由直接可得.【詳解】由題知,所以,因?yàn)?,所?故選:A5、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進(jìn)而根據(jù)面積比求概率.【詳解】由題意知:若兩個(gè)數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C6、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,利用空間向量求解【詳解】由題意得,因?yàn)檎叫蜛BCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因?yàn)?,所以AC與平面PCE所成角的正弦值,因?yàn)锳C與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A7、C【解析】利用空間向量垂直的坐標(biāo)表示計(jì)算即可得解【詳解】因向量,,且,則,解得,所以實(shí)數(shù)等于.故選:C8、A【解析】由橢圓的定義得,進(jìn)而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因?yàn)橛蓹E圓的定義得,,所以,因?yàn)槭堑闹悬c(diǎn),是的中點(diǎn),所以.故選:A9、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對(duì)于A,在區(qū)間,,故A不正確;對(duì)于B,在區(qū)間,,故B不正確;對(duì)于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D10、A【解析】按照二項(xiàng)展開(kāi)式展開(kāi)表示出第二項(xiàng)第三項(xiàng),解不等式即可.【詳解】由二項(xiàng)展開(kāi)式,第二項(xiàng)為:,第三項(xiàng)為:,依題意,兩邊約去得到,即,由知,則,同時(shí)約去得到.故選:A.11、A【解析】先根據(jù)頻率分布直方圖確定成績(jī)?cè)趦?nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績(jī)?cè)趦?nèi)的頻率為,又本次賽車(chē)中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.12、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對(duì)于A中,令,,,,滿足,,但,故A錯(cuò)誤;對(duì)于B中,因?yàn)?,所以由不等式的可加性,可得,所以,故B正確;對(duì)于C中,令,,,,滿足,,但,故C錯(cuò)誤;對(duì)于D中,令,,,,滿足,,但,故D錯(cuò)誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】將點(diǎn)代入拋物線方程即可得出答案.【詳解】解:因?yàn)閽佄锞€經(jīng)過(guò)點(diǎn),所以,即.故答案為:2.14、【解析】設(shè),,利用可得即可求得,利用兩點(diǎn)間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的面積的最小值為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.15、-2【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點(diǎn)到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標(biāo)準(zhǔn)方程可得,圓心為,半徑圓C與直線相交于、兩點(diǎn),且,由垂徑定理和勾股定理得圓心到直線的距離為,由點(diǎn)到直線距離公式得,所以,解得,故答案為:.16、①②【解析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長(zhǎng)公式求,即可判斷.【詳解】由題設(shè),且右焦點(diǎn)為,①時(shí)直線,故,則符合題設(shè);②時(shí),同①知:符合題設(shè);③時(shí)直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時(shí),同③分析知:,不合題設(shè);故答案為:①②.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長(zhǎng)公式求出的長(zhǎng)度,再根據(jù)點(diǎn)到直線的距離公式求出點(diǎn)O到直線AB的距離,再根據(jù)面積公式即可求出結(jié)果.【小問(wèn)1詳解】由題意可得,,∴,,,所以橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】直線l的方程為,代入橢圓方程得,設(shè),,則,,,∴,又∵點(diǎn)O到直線AB的距離,∴,即△OAB的面積為.18、(1)答案見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時(shí),,當(dāng)時(shí),令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問(wèn)1詳解】的定義域?yàn)楫?dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得;綜上所述:當(dāng)時(shí),在上單調(diào)遞增,無(wú)減區(qū)間;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;【小問(wèn)2詳解】,,即證:,即證:當(dāng)時(shí),,,當(dāng)時(shí),令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即19、(1);(2)4【解析】(1)根據(jù)奇函數(shù)的定義,代入化簡(jiǎn)得,進(jìn)而可得的值;(2)設(shè),可得,根據(jù)奇函數(shù)的性質(zhì)得,進(jìn)而可得結(jié)果.【詳解】解:(1)因?yàn)槭瞧婧瘮?shù),所以,即,整理得,又,所以(2)設(shè),因?yàn)椋砸驗(yàn)槭瞧婧瘮?shù),所以所以【點(diǎn)睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據(jù)函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.20、(1);(2)(ⅰ);(ⅱ)證明見(jiàn)解析.【解析】(1)求出,,利用導(dǎo)數(shù)的幾何意義即可求得切線方程;(2)(?。└鶕?jù)題意對(duì)參數(shù)分類(lèi)討論,當(dāng)時(shí),等價(jià)轉(zhuǎn)化,且構(gòu)造函數(shù),利用零點(diǎn)存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關(guān)系,求得并構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其單調(diào)性和最值,則問(wèn)題得證.【小問(wèn)1詳解】當(dāng)時(shí),,則,故,,則曲線在點(diǎn)處的切線方程為.【小問(wèn)2詳解】(?。┮?yàn)?,故可得,因?yàn)?,則當(dāng)時(shí),,則,無(wú)零點(diǎn),不滿足題意;當(dāng)時(shí),若在有一個(gè)零點(diǎn),即在有一個(gè)零點(diǎn),也即在有一個(gè)零點(diǎn),又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點(diǎn),則;(ⅱ)由(?。┛芍粼趨^(qū)間上有唯一的零點(diǎn),則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)以及最值;處理問(wèn)題的關(guān)鍵是合理轉(zhuǎn)化函數(shù)零點(diǎn)問(wèn)題,以及充分利用零點(diǎn)存在定理,熟練掌握構(gòu)造函數(shù)法,屬綜合困難題.21、(1)(2)【解析】(1)由給定條件結(jié)合橢圓標(biāo)準(zhǔn)方程的特征列不等式求解作答.(2)求命題q真時(shí)的t值范圍,再借助“或”聯(lián)結(jié)的命題為真命題求解作答.【小問(wèn)1詳解】因方程所表示的曲線為焦點(diǎn)在x軸上的橢圓,則有,解得,所以實(shí)數(shù)t的取值范圍是.【小問(wèn)2詳解】,則有,當(dāng)且僅當(dāng),即時(shí)取“=”,即,因當(dāng)時(shí),函數(shù)恒成立,則,解得,命題q為真命題有,因?yàn)榧倜},且為真命題,則與一真一假,當(dāng)p真q假時(shí),,當(dāng)p假q真時(shí),,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國(guó)電信山東煙臺(tái)分公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)安全生產(chǎn)科學(xué)研究院第一批公開(kāi)招聘補(bǔ)充高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所資源昆蟲(chóng)保護(hù)團(tuán)隊(duì)招聘科研助理高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025東方航空公司江西分公司招聘地面服務(wù)部特種車(chē)輛司機(jī)1名高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年福建南平浦城縣事業(yè)單位招聘56人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年浙江省杭州市部分市屬事業(yè)單位招聘71人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年安徽肥西縣部分單位招聘人員擬聘人員歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年江蘇事業(yè)單位判斷模塊突破歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 古馬隆樹(shù)脂行業(yè)相關(guān)投資計(jì)劃提議
- 音樂(lè)節(jié)特邀舞蹈演員聘用協(xié)議
- 護(hù)士血標(biāo)本采集不合格原因分析品管圈魚(yú)骨圖柏拉圖
- 集裝箱運(yùn)輸駕駛員安全操作規(guī)程范文
- 內(nèi)分泌科糖尿病“一病一品”
- 年會(huì)小游戲萬(wàn)能模板
- 學(xué)校關(guān)于加強(qiáng)校園防性侵害防欺凌和暴力工作的實(shí)施方案6篇
- 解除合同的補(bǔ)充協(xié)議
- 2023年中醫(yī)養(yǎng)生之藥膳食療考試試題
- 《醫(yī)學(xué)人文課件》
- 四川省成都市龍泉驛區(qū)2023-2024學(xué)年三年級(jí)數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含答案
- 高空除銹刷漆施工方案模板
- 鍋爐控制器modbus協(xié)議支持說(shuō)明
評(píng)論
0/150
提交評(píng)論