版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省白銀市會寧縣會寧縣第一中學2024屆高二數(shù)學第一學期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當{an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.62.已知向量,,若,則()A.1 B.C. D.23.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.4.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.5.直線的傾斜角大小為()A. B.C. D.6.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條7.某次生物實驗6個小組的耗材質量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.658.設函數(shù)是定義在上的奇函數(shù),且,當時,有恒成立.則不等式的解集為()A. B.C. D.9.已知二次函數(shù)交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.10.“,”的否定是A., B.,C., D.,11.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.312.拋物線的焦點坐標是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在公差不為0的等差數(shù)列中,為其前n項和,若,則正整數(shù)______14.已知點,是橢圓內的兩個點,M是橢圓上的動點,則的最大值為______15.已知橢圓與雙曲線具有相同的焦點,,且在第一象限交于點,設橢圓和雙曲線的離心率分別為,,若,則的最小值為_______.16.已知在四面體ABCD中,,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知:,有,:方程表示經過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設為的導數(shù),若方程的兩根為,且,當時,不等式對任意的恒成立,求正實數(shù)的最小值.19.(12分)已知命題p:函數(shù)有零點;命題,(1)若命題p,q均為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍20.(12分)在平面直角坐標系中,已知點,軸于點,是線段上的動點,軸于點,于點,與相交于點.(1)判斷點是否在拋物線上,并說明理由;(2)過點作拋物線的切線交軸于點,過拋物線上的點作拋物線的切線交軸于點,……,以此類推,得到數(shù)列,求,及數(shù)列的通項公式.21.(12分)設橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設過點的直線與橢圓交于點,且點在第一象限,點關于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.22.(10分)已知函數(shù).(1)若,求的極值;(2)若有兩個零點,求實數(shù)a取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題可得當時,,當時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當時,,當時,,故時,取得最大值故選:B.2、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B3、B【解析】首先根據(jù)題意設出拋物線的方程,利用點在曲線上的條件為點的坐標滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.4、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.5、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關系可直接求解.【詳解】由直線可得,所以,設傾斜角為,則因為所以故選:B6、A【解析】利用雙曲線漸近線的性質,結合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.7、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設,將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.8、B【解析】根據(jù)當時,可知在上單調遞減,結合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結果.【詳解】,當時,,在上單調遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題,關鍵是能夠通過構造函數(shù)的方式,確定所構造函數(shù)的單調性和奇偶性,進而根據(jù)零點確定不等式的解集.9、C【解析】由已知求得點A、B、C的坐標,則有AB的垂直平分線必過圓心,所以設圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C10、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎題.11、D【解析】根據(jù)輸出結果可得輸出時,結合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結合選項知:D符合要求.故選:D.12、D【解析】根據(jù)拋物線的焦點坐標為可知,拋物線即的焦點坐標為,故選D.考點:拋物線的標準方程及其幾何性質.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】設等差數(shù)列公差為d,根據(jù)等差數(shù)列通項公式、前n項和公式及可求k.【詳解】設等差數(shù)列公差為d,∵,∴,即,即,∴.故答案為:13.14、##【解析】結合橢圓的定義求得正確答案.【詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點,設左焦點為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:15、【解析】由題意設焦距為,橢圓長軸長為,雙曲線實軸為,令在雙曲線的右支上,由已知條件結合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設焦距為,橢圓長軸長為,雙曲線實軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當且僅當,上式取得等號,可得的最小值為故答案為:【點睛】本題考查橢圓和雙曲線的性質,主要是離心率,解題時要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運用16、24【解析】由線段的空間關系有,應用向量數(shù)量積的運算律及已知條件即可求.【詳解】由題設,可得如下四面體示意圖,則,又,,所以.故答案為:24三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將問題轉化為不等式對應的方程無解,進而根據(jù)根的判別式小于0,計算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對應的不等式組,解之即可.【小問1詳解】由條件知,恒成立,只需的.解得.【小問2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實數(shù)的取值范圍是.18、(1)(2)1【解析】(1)先求導數(shù),根據(jù)導數(shù)的幾何意義可求得切線方程;(2)將已知方程結合其兩根,進行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點為,則切線方程為:.【小問2詳解】由題意有:,則,因為分別是方程的兩個根,即.兩式相減,則,則不等式,可變?yōu)?,兩邊同時除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當,即時,在上恒成立,則在上單調遞增,又,則在上恒成立;②當,即時,當時,,則在上單調遞減,則,不符合題意.綜上:,所以的最小值為1.19、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質求p為真時a的取值范圍,根據(jù)的性質判斷與有交點求q為真時a的取值范圍,進而求p,q均為真時a的取值范圍.(2)根據(jù)復合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問1詳解】若p為真,,解得或,所以若q為真,因為在上為增函數(shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問2詳解】由題設,易知:p,q兩命題一真一假當p真q假時,p為真,則或,q為假,則或,此時a的取值范圍為;當p假q真時,p為假,則,q為真,則,此時a的取值范圍為綜上,實數(shù)a的取值范圍為.20、(1)在拋物線上,理由見解析(2),,.【解析】(1)根據(jù)直線的方程設出點的坐標,利用已知條件求出點的坐標即可判斷點是否在拋物線上;(2)設出直線的直線方程,與拋物線聯(lián)立,令,即可求出,同理可以求出,設出直線的直線方程,與拋物線聯(lián)立,令即可求出的方程,若令,,即,故數(shù)列是首項,公比為的等比數(shù)列,即可求出數(shù)列的通項公式.【小問1詳解】由已知條件得直線的方程為,設點,則,由直線的方程為可得點的坐標為,點滿足拋物線,則點是否在拋物線上;【小問2詳解】設的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知,設的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知設點,設直線方程為,將直線與拋物線聯(lián)立得,,其中,即,,解得,直線的方程為,即,令得,即直線過點,則直線的斜率為,直線的方程也可以表示為,即,令,,即,則,即數(shù)列是首項,公比為的等比數(shù)列,故.21、(1);(2).【解析】(1)根據(jù)直線被圓截得的弦長為,由解得,再由離心率結合求解。(2)設,則,得到直線:;直線:,聯(lián)立求得,再根據(jù)線斜率大于,求得,然后由求解.【詳解】(1)以線段為直徑的圓的圓心為:,半徑,圓心到直線的距離,直線被圓截得的弦長為,解得:,又橢圓離心率,∴,,橢圓的標準方程為:.(2)設,其中,,則,∴,,則直線為:;直線為:,由得:,∴,∴,∴,令,,則,∴,∵∴,∴,即.【點睛】本題主要考查橢圓方程和幾何性質以及直線與圓,橢圓的位置關系的應用,還考查了運算求解的能力,屬于中檔題.22、(1)極小值為,無極大值(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 景德鎮(zhèn)藝術職業(yè)大學《配合物化學》2023-2024學年第一學期期末試卷
- 遼寧大學《嵌入式技術》2023-2024學年第一學期期末試卷
- 江蘇海事職業(yè)技術學院《口腔科學》2023-2024學年第一學期期末試卷
- 黑龍江工程學院昆侖旅游學院《建筑施工組織》2023-2024學年第一學期期末試卷
- 重慶三峽職業(yè)學院《食品儀器分析原子吸收測定水中鈣(標準曲線法)》2023-2024學年第一學期期末試卷
- 浙江越秀外國語學院《漆畫表現(xiàn)灰料新語言》2023-2024學年第一學期期末試卷
- 浙江海洋大學《GIS氣象應用與開發(fā)》2023-2024學年第一學期期末試卷
- 中國計量大學《生物信息學入門(雙語)》2023-2024學年第一學期期末試卷
- 中央財經大學《工程建筑制圖》2023-2024學年第一學期期末試卷
- 小學德育工作的管理制度
- 大學生職業(yè)生涯規(guī)劃-自我認知-課件
- 硬件研發(fā)產品規(guī)格書mbox103gs
- 直升機結構與系統(tǒng)版
- 青春期教育-女生版青春期性教育-青春期性教育自慰課件
- 新生兒疾病診療規(guī)范診療指南診療常規(guī)2022版
- 兒科學 新生兒顱內出血
- YY/T 0065-2016眼科儀器裂隙燈顯微鏡
- 喜報可編輯11張
- 食管癌護理查房20352
- 餐飲服務投標文件
- 城投公司的債務風險及化解方式
評論
0/150
提交評論