




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省江門市示范初中2023-2024學年數(shù)學高二上期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在的最大值是()A. B.C. D.2.在區(qū)間內(nèi)隨機取一個數(shù)則該數(shù)滿足的概率為()A. B.C. D.3.函數(shù)的值域為()A. B.C. D.4.已知呈線性相關(guān)的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.75.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)6.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.7.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值8.不等式的解集為()A. B.C.或 D.或9.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準線交于點,若,則A. B.C. D.10.如圖,在四面體中,,,,D為BC的中點,E為AD的中點,則可用向量,,表示為()A. B.C. D.11.下列各式正確的是()A. B.C. D.12.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則f(e)=__.14.i為虛數(shù)單位,復(fù)數(shù)______15.等差數(shù)列,的前項和分別為,,且,則______.16.已知圓,圓,則兩圓的公切線條數(shù)是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由18.(12分)動點M到點的距離比它到直線的距離小,記M的軌跡為曲線C.(1)求C的方程;(2)已知圓,設(shè)P,A,B是C上不同的三點,若直線PA,PB均與圓D相切,若P的縱坐標為,求直線AB的方程.19.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.20.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長21.(12分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.22.(10分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C2、C【解析】求解不等式,利用幾何概型的概率計算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計算公式可得:在區(qū)間內(nèi)隨機取一個數(shù)則該數(shù)滿足的概率為.故選:.3、C【解析】根據(jù)基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數(shù)的值域為故選:C4、A【解析】根據(jù)回歸直線過樣本點的中心進行求解即可.【詳解】由題意可得,,則,解得故選:A.5、C【解析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.6、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.7、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A8、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A9、A【解析】分別過作準線的垂線,垂足分別為,設(shè),則,,故選A.10、B【解析】利用空間向量的基本定理,用,,表示向量【詳解】因為是的中點,是的中點,,故選:B11、C【解析】利用導(dǎo)數(shù)的四則運算即可求解.【詳解】對于A,,故A錯誤;對于B,,故B錯誤;對于C,,故C正確;對于D,,故D錯誤;故選:C12、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由導(dǎo)數(shù)得出,再求.【詳解】∵,∴,,解得,,,故答案為:.14、【解析】利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡求解即可.【詳解】故答案為:.15、【解析】取,代入計算得到答案.【詳解】,當時故答案為【點睛】本題考查了前項和和通項的關(guān)系,取是解題的關(guān)鍵.16、【解析】首先把圓的一般方程化為標準方程,進一步求出兩圓的位置關(guān)系,可得兩圓的公切線條數(shù).【詳解】解:由圓,可得:,可得其圓心為,半徑為;由,可得,可得其圓心為,半徑為2;所以可得其圓心距為:,可得:,故兩圓相交,其公切線條數(shù)為,故答案為:2.【點睛】本題主要考查兩圓的位置關(guān)系及兩圓公切線條數(shù)的判斷,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標公式并結(jié)合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設(shè)直線l方程為,由消去x并整理得,設(shè),,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)(2)【解析】(1)由拋物線的定義可得結(jié)論;(2)設(shè),得PA的兩點式方程為,由在拋物線上,化簡直線方程為,然后由圓心到切線的距離等于半徑得出的關(guān)系式,并利用得出點滿足的等式,同理設(shè)得方程,最后由直線方程的定義可得直線方程【小問1詳解】由題意得動點M到點的距離等于到直線的距離,所以曲線C是以為焦點,為準線的拋物線.設(shè),則,于是C的方程為.【小問2詳解】由(1)可知,設(shè),PA的兩點式方程為.由,,可得.因為PA與D相切,所以,整理得.因為,可得.設(shè),同理可得于是直線AB的方程為.19、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時,成立,所以在上遞減;②時,當時,,當時,,所以在上單增,單減;【小問2詳解】由(1)知:時,在單減,所以;時,在單減,所以;時,在上單增,上遞減,所以;時,在單增,所以;綜上:.20、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關(guān)點的坐標,證明線面平行只需求出平面的法向量,計算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設(shè)為平面EMN的法向量,則,因為,,所以.不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.21、(1);(2).【解析】(1)由題設(shè)可得且,結(jié)合橢圓參數(shù)關(guān)系求,即可得橢圓的方程;(2)設(shè)直線為,聯(lián)立拋物線整理成一元二次方程的形式,由求m的范圍,再應(yīng)用韋達定理及弦長公式求關(guān)于m的表達式,根據(jù)二次函數(shù)性質(zhì)求最值即可.小問1詳解】由題設(shè),且,故,,則,所以橢圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老字號品牌振興計劃實施方案(參考范文)
- 《少年的你》觀后感(15篇)
- 河道生態(tài)修復(fù)工程可行性研究報告
- 工廠建設(shè)項目立項報告
- 形勢與政策關(guān)注國家大事培養(yǎng)家國情懷
- 新疆烏魯木齊市實驗學校2023-2024學年高三上學期1月月考物理含解析
- 不跟陌生人走安全教育教案
- 廣東省部分學校2023-2024學年高三上學期11月聯(lián)考地理含解析
- 心理安全小班課件教案
- 杭州職業(yè)技術(shù)學院《學前游戲論》2023-2024學年第二學期期末試卷
- 2020版5MW風力發(fā)電機組安裝手冊風電機組安裝手冊
- 【新能源汽車動力電池常見故障及維修方法探討5900字(論文)】
- 《廣州市城市樹木保護專章編制指引》解讀(分享版)
- 樂山老江壩安置方案
- 詩詞大會比賽題庫含答案全套
- 過磅合同范本
- 排水管網(wǎng)檢測投標方案(技術(shù)標)
- 《大學生職業(yè)生涯規(guī)劃作品》重慶
- PI形式發(fā)票范文模板
- (PQCDSM)生產(chǎn)現(xiàn)場改善與安全生產(chǎn)管理
- 全國青少年電子信息智能創(chuàng)新大賽圖形化編程(必做題模擬三卷)
評論
0/150
提交評論