版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省張家口市涿鹿中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題,則為()A. B.C. D.2.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.3.如圖所示,已知三棱錐,點(diǎn),分別為,的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.4.北京大興國際機(jī)場的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用,在數(shù)學(xué)上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點(diǎn)的曲率等于與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和.例如:正四面體在每個頂點(diǎn)有個面角,每個面角是,所以正四面體在每個頂點(diǎn)的曲率為,故其總曲率為.給出下列三個結(jié)論:①正方體在每個頂點(diǎn)的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點(diǎn)數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號是()A.①② B.①③C.②③ D.①②③5.已知圓和橢圓.直線與圓交于、兩點(diǎn),與橢圓交于、兩點(diǎn).若時(shí),的取值范圍是,則橢圓的離心率為()A. B.C. D.6.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項(xiàng),為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是7.已知拋物線的焦點(diǎn)與橢圓的一個焦點(diǎn)重合,過坐標(biāo)原點(diǎn)作兩條互相垂直的射線,,與分別交于,則直線過定點(diǎn)()A. B.C. D.8.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.9.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)對稱點(diǎn)為,則()A. B.C. D.10.已知橢圓的一個焦點(diǎn)坐標(biāo)為,則的值為()A. B.C. D.11.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點(diǎn)的坐標(biāo)為()A. B.C. D.12.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,的前項(xiàng)和為,則______.14.已知,,,若,則______.15.若函數(shù),則在點(diǎn)處切線的斜率為______16.為和的等差中項(xiàng),則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l過點(diǎn),與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn)(1)若的面積為,求直線l的方程;(2)求的面積的最小值18.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍19.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達(dá)式;(2)用求導(dǎo)的方法證明.20.(12分)已知橢圓的焦距為,左、右焦點(diǎn)分別為,為橢圓上一點(diǎn),且軸,,為垂足,為坐標(biāo)原點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點(diǎn)的直線(斜率不為)與橢圓交于兩點(diǎn),為軸正半軸上一點(diǎn),且,求點(diǎn)的坐標(biāo)21.(12分)如圖,正方體的棱長為2,點(diǎn)為的中點(diǎn).(1)求直線與平面所成角的正弦值;(2)求點(diǎn)到平面的距離.22.(10分)已知圓的圓心在直線上,且圓經(jīng)過點(diǎn)與點(diǎn).(1)求圓的方程;(2)過點(diǎn)作圓的切線,求切線所在的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用含有一個量詞的命題的否定的定義判斷.【詳解】因?yàn)槊}是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D2、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B3、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因?yàn)闉榈闹悬c(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),所以,所以,故選:A.4、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個頂點(diǎn)的曲率為,故①正確;②由定義可得多面體的總曲率頂點(diǎn)數(shù)各面內(nèi)角和,因?yàn)樗睦忮F有5個頂點(diǎn),5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.5、C【解析】由題設(shè),根據(jù)圓與橢圓的對稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時(shí),的取值范圍是,結(jié)合圓與橢圓的對稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時(shí),,故,∴故選:C.6、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項(xiàng)為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項(xiàng),為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.7、A【解析】由橢圓方程可求得坐標(biāo),由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達(dá)定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點(diǎn)的求法可求得定點(diǎn).【詳解】由橢圓方程知其焦點(diǎn)坐標(biāo)為,又拋物線焦點(diǎn),,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標(biāo)原點(diǎn)不重合,,,當(dāng)時(shí),,直線恒過定點(diǎn).故選:A.【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與拋物線綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.8、D【解析】設(shè)圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長,因?yàn)閭?cè)面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.9、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,所以,因此,故選:C10、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點(diǎn)在軸上,且,故.故選:B.11、A【解析】設(shè)點(diǎn)的坐標(biāo)為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點(diǎn)的坐標(biāo).【詳解】設(shè)點(diǎn)的坐標(biāo)為,,,,,則,,,平面,即,所以,,解得,所以,點(diǎn)的坐標(biāo)為,故選:A.12、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時(shí)間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析出當(dāng)為正奇數(shù)時(shí),,可求得的值,再分析出當(dāng)為正偶數(shù)時(shí),,可求得的值,進(jìn)而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時(shí),,于是,,,,,所以.又因?yàn)楫?dāng)為正偶數(shù)時(shí),,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時(shí),,以及當(dāng)為正偶數(shù)時(shí),,找出規(guī)律,結(jié)合并項(xiàng)求和法求出以及的值.14、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因?yàn)椋?,,若,則,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.15、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點(diǎn)處切線的斜率為.故答案為:16、【解析】利用等差中項(xiàng)的定義可求得結(jié)果.【詳解】由等差中項(xiàng)的定義可得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)4【解析】(1)設(shè)直線方程為,根據(jù)所過的點(diǎn)及面積可得關(guān)于的方程組,求出解后可得直線方程,我們也可以設(shè)直線,利用面積求出后可得直線方程.(2)結(jié)合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問1詳解】法一:(1)設(shè)直線,則解得或,所以直線或法二:設(shè)直線,,則,則,∴或﹣8所以直線或【小問2詳解】法一:∵,∴,∴,此時(shí),∴面積的最小值為4,此時(shí)直線法二:∵,∴,此時(shí),∴面積的最小值為4,此時(shí)直線18、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.19、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.20、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡即可求得點(diǎn)坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點(diǎn)作坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,0,,,2,,,0,,,0,,設(shè)平面的一個法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因?yàn)樗渣c(diǎn)到平面的距離為,點(diǎn)到平面的距離為22、(1);(2)或.【解析】(1)求出線段中點(diǎn),進(jìn)而得到線段的垂直平分線為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版房屋修建承包合同范本
- 專用機(jī)械設(shè)備運(yùn)輸協(xié)議2024版版A版
- 二零二五年度智能化建筑系統(tǒng)集成與勘測合同范本3篇
- 2025年打印機(jī)網(wǎng)絡(luò)安全協(xié)議3篇
- 2024版美容院員工勞動協(xié)議范本版B版
- 2024年高效食堂管理及餐飲服務(wù)承包合同書一
- 2024高端牙科美容服務(wù)定制合同
- 2024版鑄鐵部件供應(yīng)協(xié)議樣本版B版
- 武漢體育學(xué)院《中學(xué)化學(xué)教材分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度綠色節(jié)能型家裝水電施工總承包合同范本3篇
- 2023-2024學(xué)年浙江省杭州市高二上學(xué)期1月期末地理試題(解析版)
- 2024年湖北三江航天江河化工科技限公司招聘(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- 10日益重要的國際組織第三課時(shí)中國與國際組織(教學(xué)設(shè)計(jì))2023-2024學(xué)年統(tǒng)編版道德與法治六年級下冊
- Unit 1 同步練習(xí)人教版2024七年級英語上冊
- 工程管理重大風(fēng)險(xiǎn)應(yīng)對方案
- 直播帶貨助農(nóng)現(xiàn)狀及發(fā)展對策研究-以抖音直播為例(開題)
- 腰椎間盤突出疑難病例討論
- 《光伏發(fā)電工程工程量清單計(jì)價(jià)規(guī)范》
- 2023-2024學(xué)年度人教版四年級語文上冊寒假作業(yè)
- (完整版)保證藥品信息來源合法、真實(shí)、安全的管理措施、情況說明及相關(guān)證明
- 營銷專員績效考核指標(biāo)
評論
0/150
提交評論