河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省花洲實(shí)驗(yàn)高級中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.試在拋物線上求一點(diǎn),使其到焦點(diǎn)的距離與到的距離之和最小,則該點(diǎn)坐標(biāo)為A. B.C. D.2.等比數(shù)列中,,,則()A. B.C. D.3.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.64.已知雙曲線的對稱軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或5.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥6.若,則的最小值為()A.1 B.2C.3 D.47.已知函數(shù),則曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.8.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A.1 B.3C.9 D.819.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其意思為:有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請問第二天走了()A.192

里 B.96

里C.48

里 D.24

里10.設(shè)滿足則的最大值為A. B.2C.4 D.1611.已知橢圓上一點(diǎn)到左焦點(diǎn)的距離為,是的中點(diǎn),則()A.1 B.2C.3 D.412.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.狄利克雷是十九世紀(jì)德國杰出的數(shù)學(xué)家,對數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.14.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時(shí),___________.15.程大位《算法統(tǒng)宗》里有詩云“九百九十六斤棉,贈(zèng)分八子做盤纏.次第每人多十七,要將第八數(shù)來言.務(wù)要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)開始,以后每人依次多17斤,直到第八個(gè)孩子為止.分配時(shí)一定要等級分明,使孝順子女的美德外傳,則第七個(gè)孩子分得斤數(shù)為___________.16.定義點(diǎn)到曲線的距離為該點(diǎn)與曲線上所有點(diǎn)之間距離的最小值,則點(diǎn)到曲線距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為正項(xiàng)等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,數(shù)列滿足,證明:數(shù)列的前n項(xiàng)和18.(12分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽(yù)為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價(jià)棉花質(zhì)量的重要指標(biāo)之一,在新疆某地區(qū)成熟的長絨棉中隨機(jī)抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計(jì)該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機(jī)抽測兩根棉花的纖維長度,用樣本的頻率估計(jì)概率,求至少有一根棉花纖維長度達(dá)到特等品的概率.19.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:20.(12分)已知點(diǎn)是圓:上任意一點(diǎn),是圓內(nèi)一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn)(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;(2)設(shè)不經(jīng)過坐標(biāo)原點(diǎn),且斜率為的直線與曲線相交于,兩點(diǎn),記,的斜率分別是,.當(dāng),都存在且不為時(shí),試探究是否為定值?若是,求出此定值;若不是,請說明理由21.(12分)證明:是無理數(shù).(我們知道任意一個(gè)有理數(shù)都可以寫成形如(m,n互質(zhì),)的形式)22.(10分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項(xiàng)和為Sn,且成等比數(shù)列.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意得拋物線的焦點(diǎn)為,準(zhǔn)線方程為過點(diǎn)P作于點(diǎn),由定義可得,所以,由圖形可得,當(dāng)三點(diǎn)共線時(shí),最小,此時(shí)故點(diǎn)的縱坐標(biāo)為1,所以橫坐標(biāo).即點(diǎn)P的坐標(biāo)為.選A點(diǎn)睛:與拋物線有關(guān)的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化(1)將拋物線上的點(diǎn)到準(zhǔn)線的距離轉(zhuǎn)化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用“與直線上所有點(diǎn)的連線中的垂線段最短”解決2、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)公比為,因?yàn)?,,所以,即,解得,所以;故選:D3、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.4、B【解析】分雙曲線的焦點(diǎn)在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點(diǎn)在軸上,則有,則雙曲線的離心率為;若焦點(diǎn)在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,在雙曲線的焦點(diǎn)位置不確定的情況下,要對雙曲線的焦點(diǎn)位置進(jìn)行分類討論,考查計(jì)算能力,屬于基礎(chǔ)題.5、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因?yàn)?,所以,所以故選:A6、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時(shí),取等號.即所求最小值.故選:D7、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B8、A【解析】根據(jù)條件,利用橢圓標(biāo)準(zhǔn)方程中長半軸長a,短半軸長b,半焦距c關(guān)系列式計(jì)算即得.【詳解】由橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則半焦距c=2,于是得,解得,所以值為1.故選:A9、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項(xiàng)可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B10、C【解析】可行域如圖,則直線過點(diǎn)A(0,1)取最大值2,則的最大值為4,選C.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得.11、A【解析】由橢圓的定義得,進(jìn)而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因?yàn)橛蓹E圓的定義得,,所以,因?yàn)槭堑闹悬c(diǎn),是的中點(diǎn),所以.故選:A12、A【解析】由正弦定理求解即可.【詳解】因?yàn)椋怨蔬x:A二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:114、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),取得最大值,,,由余弦定理得,解得.故答案為【點(diǎn)睛】本題考查余弦定理解三角形,同時(shí)也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時(shí),需要結(jié)合已知條件得出定值條件,同時(shí)要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.15、167【解析】由題設(shè)知8個(gè)孩子分得斤數(shù)是公差為17的等差數(shù)列,設(shè)第一個(gè)孩子分得斤,應(yīng)用等差數(shù)列前n項(xiàng)和公式求,進(jìn)而由等差數(shù)列通項(xiàng)公式求即可.【詳解】由題意,設(shè)第一個(gè)孩子分得斤,則,所以,可得,故斤.故答案為:167.16、2【解析】設(shè)出曲線上任意一點(diǎn),利用兩點(diǎn)間距離公式表達(dá)出,利用基本不等式求出最小值.【詳解】當(dāng)時(shí),顯然不成立,故,此時(shí),設(shè)曲線任意一點(diǎn),則,其中,當(dāng)且僅當(dāng),即時(shí)等號成立,此時(shí)即為最小值.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)將已知條件用首項(xiàng)和公比表示,聯(lián)立方程組即可求解數(shù)列的通項(xiàng)公式,然后由對數(shù)的運(yùn)算性質(zhì)即可得數(shù)列的通項(xiàng)公式;(2)由(1)求出,然后利用裂項(xiàng)相消求和法求出數(shù)列的前n項(xiàng)和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以18、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達(dá)到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達(dá)到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達(dá)到特等品的概率19、(1);;(2)證明見解析.【解析】(1)根據(jù)導(dǎo)數(shù)幾何意義可知,解方程求得,進(jìn)而得到切線方程;(2)當(dāng)時(shí),由,知不等式成立;當(dāng)時(shí),令,利用導(dǎo)數(shù)可求得在上單調(diào)遞增,從而得到,由此可得結(jié)論.【小問1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問2詳解】要證,即證;①當(dāng)時(shí),,,,即,;②當(dāng)時(shí),令,,,當(dāng)時(shí),,,,,即,在上單調(diào)遞增,,在上單調(diào)遞增,,即在上恒成立;綜上所述:.【點(diǎn)睛】思路點(diǎn)睛:本題第二問考查利用導(dǎo)數(shù)證明不等式的問題,解題的基本思路是將問題轉(zhuǎn)化為函數(shù)最值的求解問題;通過構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結(jié)論.20、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設(shè)出直線的方程,再與軌跡的方程聯(lián)立,借助韋達(dá)定理計(jì)算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點(diǎn),則,而,于是得,因此,點(diǎn)的軌跡是以C,A為左右焦點(diǎn),長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小問2詳解】依題意,設(shè)直線的方程為:,,由消去y并整理得:,,則且,設(shè),則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時(shí),是定值,這個(gè)定值是.【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值21、詳見解析【解析】利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論