山東省七校聯(lián)合體2023屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷_第1頁
山東省七校聯(lián)合體2023屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷_第2頁
山東省七校聯(lián)合體2023屆高三下學(xué)期4月一模考試數(shù)學(xué)試題試卷_第3頁
山東省七校聯(lián)合體2023屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷_第4頁
山東省七校聯(lián)合體2023屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省七校聯(lián)合體2023屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)f(x)=的圖象大致為()A. B.C. D.2.三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.3.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③4.函數(shù)在上的圖象大致為()A. B.C. D.5.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對稱;②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號是()A.①② B.②③ C.①②④ D.②③④6.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.7.()A. B. C. D.8.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對稱的點(diǎn)有2對,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.10.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點(diǎn)對稱11.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.112.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為______.14.直線xsinα+y+2=0的傾斜角的取值范圍是________________.15.已知點(diǎn)是拋物線上動點(diǎn),是拋物線的焦點(diǎn),點(diǎn)的坐標(biāo)為,則的最小值為______________.16.的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為_________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.18.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.19.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.20.(12分)己知函數(shù).(1)當(dāng)時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.21.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.22.(10分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)函數(shù)為非偶函數(shù)可排除兩個選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個選項(xiàng).【詳解】因?yàn)閒(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對稱,排除選項(xiàng)B,C.又f(2)==-<0.排除A,故選D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的對稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.2、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機(jī)事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機(jī)事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.3、B【解析】

由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點(diǎn)關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.4、A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.5、B【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因?yàn)閒(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點(diǎn)睛】本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型6、B【解析】

設(shè)過點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解、推理論證能力,屬于中檔題.7、B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.8、B【解析】

考慮當(dāng)時,有兩個不同的實(shí)數(shù)解,令,則有兩個不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對稱的點(diǎn)有2對,所以時,有兩個不同的實(shí)數(shù)解.令,則在有兩個不同的零點(diǎn).又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點(diǎn),舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€不同的零點(diǎn),所以,解得.又當(dāng)時,且,故在上存在一個零點(diǎn).又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因?yàn)椋栽谏弦泊嬖谝粋€零點(diǎn).綜上,當(dāng)時,有兩個不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說明零點(diǎn)的存在性,本題屬于難題.9、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.10、D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當(dāng),,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對稱,則解得:,故D錯誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.11、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計算能力.12、D【解析】

利用線面平行和垂直的判定定理和性質(zhì)定理,對選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點(diǎn)時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線過直線與直線的交點(diǎn)時,目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點(diǎn)睛】本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.14、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:15、【解析】

過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)和拋物線相切時,的值最小.再利用直線的斜率公式、導(dǎo)數(shù)的幾何意義求得切點(diǎn)的坐標(biāo),從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為,過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)最小時,的值最小.設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點(diǎn)睛】本題考查拋物線的定義,性質(zhì)的簡單應(yīng)用,直線的斜率公式,導(dǎo)數(shù)的幾何意義,屬于中檔題.16、5670【解析】

根據(jù)二項(xiàng)式展開的通項(xiàng),可得二項(xiàng)式系數(shù)的最大項(xiàng),可求得其系數(shù).【詳解】二項(xiàng)展開式一共有項(xiàng),所以由二項(xiàng)式系數(shù)的性質(zhì)可知二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng),系數(shù)為.故答案為:5670【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式的應(yīng)用,由通項(xiàng)公式求二項(xiàng)式系數(shù),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時,即,則由,,得,則,此時,的面積為;②當(dāng)時,則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應(yīng)用,考查計算能力,屬于中等題.18、(1);(2)【解析】

(1)求出,即可求出切線的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點(diǎn)坐標(biāo)為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時時,,時,,故存在使得且當(dāng)時,當(dāng)時,所以當(dāng)時,當(dāng)時,所以當(dāng)時,取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.19、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】

(1)①求導(dǎo)可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結(jié)論,求出的表達(dá)式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導(dǎo)分析的單調(diào)性,再結(jié)合單調(diào)性,設(shè)去絕對值化簡可得,再構(gòu)造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達(dá)求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因?yàn)?故,,由知在上單調(diào)遞增,,若由可得x1,因?yàn)?所以,由在上單調(diào)遞增,綜上.時,,在上單調(diào)遞減,不妨設(shè)由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點(diǎn)睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導(dǎo)數(shù)求解函數(shù)不等式以及構(gòu)造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結(jié)合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.20、(1)證明見解析(2)證明見解析【解析】

(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當(dāng)時,,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,由零點(diǎn)存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因?yàn)?,且,故,故函?shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當(dāng)時,,故函數(shù)在上單調(diào)遞增,故當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時,函數(shù)有極小值.【點(diǎn)睛】本題考查利用導(dǎo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論