版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市攸縣第三中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班級從5名同學(xué)中挑出2名同學(xué)進行大掃除,若小王和小張在這5名同學(xué)之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.2.設(shè)拋物線的焦點為F,準(zhǔn)線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.83.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.4.若直線先向右平移一個單位,再向下平移一個單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-85.焦點為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.6.在數(shù)列中,,,,則()A.2 B.C. D.17.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.8.在等差數(shù)列中,,,則公差A(yù).1 B.2C.3 D.49.在棱長為1的正四面體中,點滿足,點滿足,當(dāng)和的長度都為最短時,的值是()A. B.C. D.10.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.11.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題12.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______14.直線被圓所截得的弦的長為_____15.i為虛數(shù)單位,復(fù)數(shù)______16.若直線與直線互相垂直,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:,有,:方程表示經(jīng)過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.18.(12分)2017年國家提出鄉(xiāng)村振興戰(zhàn)略目標(biāo):2020年取得重要進展,制度框架和政策體系基本形成;2035年取得決定性進展,農(nóng)業(yè)農(nóng)村現(xiàn)代化基本實現(xiàn);2050年鄉(xiāng)村全面振興,農(nóng)業(yè)強、農(nóng)村美、農(nóng)民富全面實現(xiàn).某地為實現(xiàn)鄉(xiāng)村振興,對某農(nóng)產(chǎn)品加工企業(yè)調(diào)研得到該企業(yè)2012年到2020年盈利情況:年份201220132014201520162017201820192020年份代碼x123456789盈利y(百萬)6.06.16.26.06.46.96.87.17.0(1)根據(jù)表中數(shù)據(jù)判斷年盈利y與年份代碼x是否具有線性相關(guān)性;(2)若年盈利y與年份代碼x具有線性相關(guān)性,求出線性回歸方程并根據(jù)所求方程預(yù)測該企業(yè)2021年年盈利(結(jié)果保留兩位小數(shù))參考數(shù)據(jù)及公式:,,,,,統(tǒng)計中用相關(guān)系數(shù)r來衡量變量y,x之間的線性關(guān)系的強弱,當(dāng)時,變量y,x線性相關(guān)19.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時,直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.20.(12分)已知直線:和:(1)若,求實數(shù)m的值;(2)若,求實數(shù)m的值21.(12分)如圖,在四棱錐中P﹣ABCD中,底面ABCD是邊長為2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求證:PA⊥平面ABCD;(2)求平面PAD與平面PBC所成角的余弦值22.(10分)已知函數(shù)(1)求函數(shù)在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】記另3名同學(xué)分別為a,b,c,應(yīng)用列舉法求古典概型的概率即可.【詳解】記另3名同學(xué)分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.2、D【解析】由題可得方程,進而可得點坐標(biāo)及點坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標(biāo)為,代入拋物線方程,得P點坐標(biāo)為,∴.故選:D.3、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A4、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點到直線距離公式列式計算作答.【詳解】將直線先向右平移一個單位,再向下平移一個單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A5、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.6、A【解析】根據(jù)題中條件,逐項計算,即可得出結(jié)果.【詳解】因為,,,所以,因此.故選:A.7、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A8、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.9、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內(nèi),又,即,于是得點N在直線上,棱長為1的正四面體中,當(dāng)長最短時,點M是點A在平面上的射影,即正的中心,因此,,當(dāng)長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A10、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.11、D【解析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應(yīng)用.12、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)向量平行求得,由此求得.【詳解】由于,所以.故答案為:14、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;15、【解析】利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡求解即可.【詳解】故答案為:.16、4【解析】由直線垂直的性質(zhì)求解即可.【詳解】由題意得,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將問題轉(zhuǎn)化為不等式對應(yīng)的方程無解,進而根據(jù)根的判別式小于0,計算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對應(yīng)的不等式組,解之即可.【小問1詳解】由條件知,恒成立,只需的.解得.【小問2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實數(shù)的取值范圍是.18、(1)年盈利y與年份代碼x具有線性相關(guān)性(2),7.25百萬元【解析】(1)根據(jù)表中的數(shù)據(jù)和提供的公式計算即可;(2)先求線性回歸方程,再代入計算即可【小問1詳解】由表中的數(shù)據(jù)得,,,,因為,所以年盈利y與年份代碼x具有線性相關(guān)性【小問2詳解】,,,當(dāng)時,,該企業(yè)2021年年盈利約為7.25百萬元19、(1);(2)或.【解析】(1)由題設(shè)可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,即,解得:,所以,整理得:,解得:或,則直線為或.20、(1)2(2)或【解析】(1)易知兩直線的斜率存在,根據(jù),由斜率相等求解.(2)分和,根據(jù),由直線的斜率之積為-1求解.【小問1詳解】由直線的斜率存在,且為,則直線的斜率也存在,且為,因為,所以,解得或2,①當(dāng)時,由此時直線,重合,②當(dāng)時,,此時直線,平行,綜上:若,則實數(shù)m的值為2【小問2詳解】①當(dāng)時,直線斜率為0,此時若必有,不可能.②當(dāng)時,若必有,解得,由上知若,則實數(shù)m的值為或21、(1)證明見解析;(2).【解析】(1)根據(jù)線面垂直的判定定理來證得平面.(2)建立空間直角坐標(biāo)系,利用向量法來求得平面與平面所成角的余弦值.【小問1詳解】由于平面,所以,由于,所以平面.【小問2詳解】建立如圖所示空間直角坐標(biāo)系,平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寵物寄養(yǎng)中心2025年度會員制寄養(yǎng)服務(wù)協(xié)議3篇
- 2025年度大米產(chǎn)業(yè)鏈上下游資源整合及供應(yīng)鏈管理服務(wù)合同3篇
- 2025年度航空運輸租賃合同范本:全新合作協(xié)議3篇
- 二零二五年度新型木工次結(jié)構(gòu)建筑構(gòu)件加工與施工合同3篇
- 2025貨物采購合同樣書
- 二零二五年度企業(yè)數(shù)字化轉(zhuǎn)型與客戶關(guān)系管理服務(wù)合同3篇
- 2025年度一手新房全款合同簡易版(含智能家居)3篇
- 2025年度農(nóng)村土地置換項目合作協(xié)議書
- 二零二五年度熱處理設(shè)備生產(chǎn)與市場分析合同3篇
- 二零二五年度農(nóng)村危房改造回遷房買賣合同
- 英語-湖南省天一大聯(lián)考暨郴州市2025屆高考高三第二次教學(xué)質(zhì)量檢測(郴州二檢懷化統(tǒng)考)試題和答案
- 【MOOC期末】《形勢與政策》(北京科技大學(xué))期末慕課答案
- 營銷專業(yè)安全培訓(xùn)
- 2024年度五星級酒店廚師團隊管理與服務(wù)合同3篇
- 廣東省廣州市花都區(qū)2024年七年級上學(xué)期期末數(shù)學(xué)試題【附答案】
- 期末測試模擬練習(xí) (含答案) 江蘇省蘇州市2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- 上海市徐匯區(qū)2024-2025學(xué)年高一語文下學(xué)期期末試題含解析
- 線性代數(shù)知到智慧樹章節(jié)測試課后答案2024年秋貴州理工學(xué)院
- 安防主管崗位招聘面試題及回答建議(某大型集團公司)2025年
- 2023年全國職業(yè)院校技能大賽賽項-ZZ019 智能財稅基本技能賽題 - 模塊三
- 冠心病中西醫(yī)診療課件
評論
0/150
提交評論