江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省鷹潭市2023年高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓上的一點,則點到兩焦點的距離之和是()A.6 B.9C.14 D.102.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.3.(文科)已知點為曲線上的動點,為圓上的動點,則的最小值是A.3 B.5C. D.4.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸5.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+6.若,則圖像上的點的切線的傾斜角滿足()A.一定為銳角 B.一定為鈍角C.可能為 D.可能為直角7.已知且,則下列不等式恒成立的是A. B.C. D.8.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.9.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關(guān)關(guān)系的兩個變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.310.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.11.已知,若,則()A. B.2C. D.e12.方程表示的曲線經(jīng)過的一點是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點是底面內(nèi)(含邊界)的一點,且平面,則異面直線與所成角的取值范圍為____________14.已知對任意正實數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______15.以下四個關(guān)于圓錐曲線的命題中:①設A、B為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;②拋物線焦點坐標是;③過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點其中真命題的序號為______(寫出所有真命題的序號.)16.在空間直角坐標系中,已知向量,則在軸上的投影向量為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是菱形,平面,,,分別為,的中點(1)證明:平面;(2)證明:平面18.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學等選科考試,其中600名學生化學成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計這600名學生化學成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和中位數(shù)(中位數(shù)精確到0.1)19.(12分)某初中學校響應“雙減政策”,積極探索減負增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時間.現(xiàn)為調(diào)查學生的家庭作業(yè)時間,隨機抽取了名學生,記錄他們每天完成家庭作業(yè)的時間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計這名學生完成家庭作業(yè)時間的中位數(shù)(中位數(shù)結(jié)果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機抽取名學生進行“雙減政策”情況訪談,再從訪談的學生中選取名學生進行成績跟蹤,求被選作成績跟蹤的名學生中,第三組和第五組各有名的概率20.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程21.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計該市居民月均用水量的眾數(shù)和中位數(shù)22.(10分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點,則點到兩焦點的距離之和為,故選:A2、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當時,,當時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.3、A【解析】數(shù)形結(jié)合分析可得,當時能夠取得的最小值,根據(jù)點到圓心的距離減去半徑求解即可.【詳解】由對勾函數(shù)的性質(zhì),可知,當且僅當時取等號,結(jié)合圖象可知當A點運動到時能使點到圓心的距離最小,最小為4,從而的最小值為.故選:A【點睛】本題考查兩動點間距離的最值問題,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.4、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D5、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B6、C【解析】求出導函數(shù),判斷導數(shù)的正負,從而得出結(jié)論【詳解】,時,,遞減,時,,遞增,而,所以切線斜率可能為正數(shù),也可能為負數(shù),還可以為0,則傾斜角可為銳角,也可為鈍角,還可以為,當時,斜率不存在,而存在,則不成立.故選:C7、C【解析】∵且,∴∴選C8、B【解析】由題設可得,又,易知,,將問題轉(zhuǎn)化為平面點線距離關(guān)系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關(guān)鍵點點睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動點到射線的距離最短問題.9、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關(guān)系數(shù)的定義:在線性回歸分析中,相關(guān)系數(shù)為r,越接近于1,相關(guān)程度越大,故④不正確;對于觀察值來說,越大,“x與y有關(guān)系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.10、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.11、B【解析】求得導函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B12、C【解析】當時可得,可得答案.【詳解】當時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點在上,設正方體的棱長為,且,得到,,設與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點是底面內(nèi)(含邊界)的一點,且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點在線段上,設正方體的棱長為,且,則,,可得,設與所成角為,則,當時,取得最小值,最小值為,當或時,取得最大值,最大值為故答案為14、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:15、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點判斷命題②;分析點P滿足的關(guān)系判斷命題③;按取值討論計算半焦距判斷命題④作答.【詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點坐標是,命題②正確;對于③,令定圓C的圓心為C,因,則點P是弦AB的中點,當P與C不重合時,有,點P在以線段AC為直徑的圓上,當P與C重合時,點P也在以線段AC為直徑的圓上,因此,動點P的軌跡是以線段AC為直徑的圓(除A點外),則命題③不正確;對于④,曲線的焦點為,當時,橢圓中半焦距c滿足:,其焦點為,當時,雙曲線中半焦距滿足:,其焦點為,因此曲線與曲線(且)有相同的焦點,命題④正確,所以真命題的序號為②④.故答案為:②④【點睛】易錯點睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關(guān)系式:;雙曲線的實半軸長、虛半軸長、半焦距分別為、、滿足關(guān)系式:,在同一問題中出現(xiàn)認真區(qū)分,不要混淆.16、【解析】根據(jù)向量坐標意義及投影的定義得解.【詳解】因為向量,所以在軸上的投影向量為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)取中點,結(jié)合三角形中位線性質(zhì)可證得四邊形為平行四邊形,由此得到,由線面平行判定定理可證得結(jié)論;(2)利用菱形特點和線面垂直的性質(zhì)可證得,,由線面垂直的判定定理可證得結(jié)論.【詳解】(1)取中點,連接,分別為中點,,四邊形為菱形,為中點,,,四邊形為平行四邊形,,又平面,平面,平面.(2)連接,四邊形為菱形,,為等邊三角形,又為中點,,平面,平面,,又平面,,平面.18、(1)(2)90(3)平均值69.5;中位數(shù)69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數(shù)與中位數(shù)的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數(shù)為:【小問3詳解】平均值為,設中位數(shù)為x,則故中位數(shù)為69.419、(1);這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點,再根據(jù)題意利用古典概率模型求解即可.【小問1詳解】根據(jù)頻率分布直方圖可得:,解得.設中位數(shù)為,由題意得,解得所以這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘【小問2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學生記為,,,,第五組的名學生記為,,所以從名學生中抽取名的樣本空間,共15個樣本點,記事件“名中學生,第三組和第五組各名”則,共有個樣本點,所以這名學生中,兩組各有名的概率20、(1).(或標準形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因為圓過兩點,,設的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或21、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對應的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計眾數(shù)為2.25;設中位數(shù)為x噸,因為前5組的頻率之和0.04+0.0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論