版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省重點(diǎn)協(xié)作校2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.2.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.3.已知直線,,若,則實(shí)數(shù)()A. B.C.1 D.24.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定5.已知直線與直線垂直,則()A. B.C. D.6.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.7.在正方體中,AC與BD的交點(diǎn)為M.設(shè)則下列向量與相等的向量是()A. B.C. D.8.小王與小張二人參加某射擊比賽預(yù)賽的五次測(cè)試成績(jī)?nèi)缦卤硭荆O(shè)小王與小張成績(jī)的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.9.已知分別表示隨機(jī)事件發(fā)生的概率,那么是下列哪個(gè)事件的概率()A事件同時(shí)發(fā)生B.事件至少有一個(gè)發(fā)生C.事件都不發(fā)生D事件至多有一個(gè)發(fā)生10.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A. B.1C. D.11.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.12.已知直線,當(dāng)變化時(shí),所有直線都恒過點(diǎn)()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個(gè)經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.14.某校組織了一場(chǎng)演講比賽,五位評(píng)委對(duì)某位參賽選手的評(píng)分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______15.下圖是個(gè)幾何體的展開圖,圖①是由個(gè)邊長(zhǎng)為的正三角形組成;圖②是由四個(gè)邊長(zhǎng)為的正三角形和一個(gè)邊長(zhǎng)為的正方形組成;圖③是由個(gè)邊長(zhǎng)為的正三角形組成;圖④是由個(gè)邊長(zhǎng)為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號(hào)).16.已知橢圓的右頂點(diǎn)為P,右焦點(diǎn)F與拋物線的焦點(diǎn)重合,的頂點(diǎn)與的中心O重合.若與相交于點(diǎn)A,B,且四邊形為菱形,則的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,,,,,為上一點(diǎn),且.請(qǐng)用空間向量知識(shí)解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.18.(12分)某學(xué)校高一、高二、高三的三個(gè)年級(jí)學(xué)生人數(shù)如下表,按年級(jí)分層抽樣的方法評(píng)選優(yōu)秀學(xué)生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學(xué)生中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取8人,經(jīng)檢測(cè)她們的得分如圖所示,把這8人的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過5分的概率.19.(12分)在數(shù)列中,,是與的等差中項(xiàng),(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項(xiàng)的和20.(12分)在數(shù)列中,,,(1)設(shè),證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.21.(12分)已知的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大(1)求n的值;(2)求展開式中含的項(xiàng)22.(10分)已知雙曲線的左,右焦點(diǎn)為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點(diǎn),若,求k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題設(shè)可得,又,易知,,將問題轉(zhuǎn)化為平面點(diǎn)線距離關(guān)系:向量的終點(diǎn)為圓心,1為半徑的圓上的點(diǎn)到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點(diǎn)時(shí),使最小,又,∴當(dāng)且僅當(dāng)三點(diǎn)共線且時(shí),最小為.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動(dòng)點(diǎn)到射線的距離最短問題.2、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)?,所以,因?yàn)?,所以,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)?,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B3、D【解析】根據(jù)兩條直線的斜率相等可得結(jié)果.【詳解】因?yàn)橹本€,,且,所以,故選:D.4、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.5、D【解析】根據(jù)互相垂直兩直線的斜率關(guān)系進(jìn)行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因?yàn)橹本€與直線垂直,所以,故選:D6、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因?yàn)?,所?故選:D.7、C【解析】根據(jù)空間向量的運(yùn)算法則,推出的向量表示,可得答案.【詳解】,故選:C.8、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績(jī)和成績(jī)波動(dòng)情況.【詳解】解:從圖表中可以看出小王每次的成績(jī)均不低于小張,但是小王成績(jī)波動(dòng)比較大,故設(shè)小王與小張成績(jī)的樣本平均數(shù)分別為和,方差分別為和.可知故選:C9、C【解析】表示事件至少有一個(gè)發(fā)生概率,據(jù)此得到答案.【詳解】分別表示隨機(jī)事件發(fā)生的概率,表示事件至少有一個(gè)發(fā)生的概率,故表示事件都不發(fā)生的概率.故選:C.10、D【解析】,,所以拋物線的焦點(diǎn)到其準(zhǔn)線的距離是,故選D.11、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D12、D【解析】將直線方程整理為,從而可得直線所過的定點(diǎn).【詳解】可化為,∴直線過定點(diǎn),故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、不在同一直線上的三點(diǎn)確定一個(gè)平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個(gè)點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個(gè)平面.故答案為:不在同一直線上的三點(diǎn)確定一個(gè)平面.14、1【解析】根據(jù)平均數(shù)和方差的計(jì)算公式,求得,則問題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對(duì)應(yīng)或,故.故答案為:1.15、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進(jìn)而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設(shè),幾何體為棱長(zhǎng)為的正四面體,該正四面體可放入一個(gè)正方體中,且正方體的棱長(zhǎng)為,該正四面體的外接球半徑為,滿足要求;②由題設(shè),幾何體為棱長(zhǎng)為的正四棱錐,如下圖所示:設(shè),連接,則為、的中點(diǎn),因?yàn)樗倪呅问沁呴L(zhǎng)為的正方形,則,所以,,所以,,所以,,,所以點(diǎn)為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設(shè),幾何體為棱長(zhǎng)為的正八面體,該正八面體可由兩個(gè)共底面,且棱長(zhǎng)均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設(shè),幾何體為棱長(zhǎng)為的正方體,其外接球半徑為,不滿足要求;故答案為:①.16、【解析】設(shè)拋物線的方程為得到,把代入橢圓的方程化簡(jiǎn)即得解.【詳解】設(shè)拋物線的方程為.由題得,代入橢圓的方程得,所以,所以,所以因?yàn)?,所?故答案為:【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(根據(jù)已知求出代入離心率的公式即得解);(2)方程法(直接由已知得到關(guān)于離心率的方程解方程即得解).要根據(jù)已知條件靈活選擇方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)以為原點(diǎn),、、分別為軸、軸、軸建立空間直角坐標(biāo)系,證明出,,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點(diǎn),、、分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設(shè)平面的法向量為,則,,即,令,可得,設(shè)平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.18、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關(guān)系式計(jì)算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進(jìn)而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計(jì)算即可;(3)求出樣本平均數(shù),進(jìn)而求出與樣本平均數(shù)之差的絕對(duì)值不超過5的數(shù),從而利于古典概型的概率公式計(jì)算即可.【小問1詳解】設(shè)該???cè)藬?shù)為n人,由題意得,所以,.【小問2詳解】設(shè)所抽樣本中有m個(gè)女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诟咭粚W(xué)生中抽取一個(gè)容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個(gè),其中至少有1名女生的基本事件有,,,,,,,共7個(gè),所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對(duì)值不超過5的數(shù)為94,86,92,87,90,93這6個(gè)數(shù),總的個(gè)數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過5的概率為.19、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求出,可計(jì)算得出,利用并項(xiàng)求和法可求得數(shù)列的前項(xiàng)的和.小問1詳解】解:由題意知是與的等差中項(xiàng),可得,可得,則,可得,所以,,又由,可得,所以數(shù)列是首項(xiàng)和公差均為的等差數(shù)列.【小問2詳解】解:由(1)可得:,,對(duì)任意的,,因此,.20、(1)略(2)【解析】(1)題中條件,而要證明的是數(shù)列是等差數(shù)列,因此需將條件中所給的的遞推公式轉(zhuǎn)化為的遞推公式:,從而,,進(jìn)而得證;(2)由(1)可得,,因此數(shù)列的通項(xiàng)公式可以看成一個(gè)等差數(shù)列與等比數(shù)列的乘積,故可考慮采用錯(cuò)位相減法求其前項(xiàng)和,即有:①,①得:②,②-①得.試題解析:(1)∵,,又∵,∴,,∴則是為首項(xiàng)為公差的等差數(shù)列;由(1)得,∴,∴①,①得:②,②-①得.考點(diǎn):1.數(shù)列的通項(xiàng)公式;2.錯(cuò)位相減法求數(shù)列的和.21、(1)10;(2);【解析】(1)利用二項(xiàng)式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項(xiàng)公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,∴展
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作中的心得體會(huì)
- 有兒子離婚協(xié)議書(34篇)
- 酒店電氣火災(zāi)應(yīng)急預(yù)案(3篇)
- 2023年地震數(shù)據(jù)采集系統(tǒng)資金申請(qǐng)報(bào)告
- 茶文化與茶藝鑒賞 教案 項(xiàng)目六 品茶韻-常見茶葉的沖泡與鑒賞
- 2023年防水油漆投資申請(qǐng)報(bào)告
- 2024年安防電子項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 載體樁自動(dòng)化施工技術(shù)規(guī)范征求意見稿
- 中小學(xué)感恩父母主題班會(huì)教案
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版能力評(píng)測(cè)(下學(xué)期)試卷及答案
- RSlogix500編程PPT課件
- 培訓(xùn)講義電子版yunsdr相關(guān)02提高部分ver
- (完整word版)SOFA評(píng)分表
- 研究生學(xué)術(shù)英語(yǔ)寫作教程Unit-7-Concluding-Research
- 儀器柜明細(xì)卡
- 礦業(yè)企業(yè)投資法律盡職調(diào)查清單
- BAND-IN-A-BOX 2004 快速入門教程(上)
- 檐口檢驗(yàn)批質(zhì)量驗(yàn)收記錄
- 睡眠呼吸暫停綜合征PPT課件
- 鑒定附件1關(guān)于組織2018年甘肅省教育科學(xué)規(guī)劃課題集中鑒定結(jié)題的通知
- 石方機(jī)械破除施工方案
評(píng)論
0/150
提交評(píng)論