版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古通遼市科左后旗甘旗卡二中2024屆高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題2.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”3.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點(diǎn)B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點(diǎn)D.曲線在處切線的斜率小于零4.已知,分別為雙曲線:的左,右焦點(diǎn),以為直徑的圓與雙曲線的右支在第一象限交于點(diǎn),直線與雙曲線的右支交于點(diǎn),點(diǎn)恰好為線段的三等分點(diǎn)(靠近點(diǎn)),則雙曲線的離心率等于()A. B.C. D.5.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個(gè)無窮數(shù)列,所有數(shù)字之和等于1.按照?qǐng)D示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個(gè)矩形塊中應(yīng)填寫的數(shù)字為B.前七個(gè)矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項(xiàng),為公比的等比數(shù)列D.按照這個(gè)規(guī)律繼續(xù)下去,第n-1個(gè)矩形塊中所填數(shù)字是6.曲線與曲線的A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.離心率相等 D.焦距相等7.已知函數(shù)為偶函數(shù),且當(dāng)時(shí),,則不等式的解集為()A. B.C. D.8.已知向量,且,則的值為()A.4 B.2C.3 D.19.2021年是中國(guó)共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國(guó)共產(chǎn)黨成立100周年慶?;顒?dòng)標(biāo)識(shí)(如圖1).其中“100”的兩個(gè)“0”設(shè)計(jì)為兩個(gè)半徑為R的相交大圓,分別內(nèi)含一個(gè)半徑為r的同心小圓,且同心小圓均與另一個(gè)大圓外切(如圖2).已知,則由其中一個(gè)圓心向另一個(gè)小圓引的切線長(zhǎng)與兩大圓的公共弦長(zhǎng)之比為()A. B.3C. D.10.在直三棱柱中,底面是等腰直角三角形,,點(diǎn)在棱上,且,則與平面所成角的正弦值為()A. B.C. D.11.若函數(shù)的導(dǎo)函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.12.三棱柱中,,,,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與平行,則___________.14.如圖,已知,分別是橢圓的左、右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過橢圓的中心并且交橢圓于點(diǎn),.若過點(diǎn)的直線是圓的切線,則橢圓的離心率為_________15.函數(shù)單調(diào)增區(qū)間為______.16.函數(shù)在區(qū)間上的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:對(duì)任意實(shí)數(shù)都有恒成立;命題:關(guān)于的方程有實(shí)數(shù)根(1)若命題為假命題,求實(shí)數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍18.(12分)已知數(shù)列的前n項(xiàng)和(1)證明是等比數(shù)列,并求的通項(xiàng)公式;(2)在和之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求數(shù)列的前n項(xiàng)和19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對(duì)的邊分別為,,,且滿足,,求面積的最大值20.(12分)已知在長(zhǎng)方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點(diǎn)F,使二面角A-BE-F的余弦值為?若存在,找出點(diǎn)F的位置;若不存在,說明理由.21.(12分)已知命題:方程表示焦點(diǎn)在軸上的雙曲線,命題:關(guān)于的方程無實(shí)根(1)若命題為真命題,求實(shí)數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實(shí)數(shù)的取值范圍22.(10分)如圖,在幾何體中,底面是邊長(zhǎng)為2的正三角形,平面,,且是的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】因?yàn)榉莗為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.2、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.3、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點(diǎn),即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)或時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點(diǎn)與最小值點(diǎn),因?yàn)?,所以曲線在處切線的斜率大于零,故選:B4、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因?yàn)辄c(diǎn)在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題5、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)每個(gè)矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項(xiàng)為,公比為的等比數(shù)列,,所以由大到小的第八個(gè)矩形塊中應(yīng)填寫的數(shù)字為,故A錯(cuò)誤;前七個(gè)矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項(xiàng),為公比的等比數(shù)列,故C錯(cuò)誤;按照這個(gè)規(guī)律繼續(xù)下去,第個(gè)矩形塊中所填數(shù)字是,故D錯(cuò)誤.故選:B.6、D【解析】分別求出兩橢圓的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率、焦距,即可判斷【詳解】解:曲線表示焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)10,短軸長(zhǎng)為6,離心率為,焦距為8曲線表示焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,離心率為,焦距為8對(duì)照選項(xiàng),則正確故選:【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題7、D【解析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡(jiǎn)不等式來求得不等式的解集.【詳解】當(dāng)時(shí),單調(diào)遞增,,所以單調(diào)遞增.因?yàn)槭桥己瘮?shù),所以當(dāng)時(shí),單調(diào)遞減.,,,或.即不等式的解集為.故選:D8、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因?yàn)?,所以,因?yàn)橄蛄浚?,所以,解得,所以的值為,故選:A.9、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.10、C【解析】取AC的中點(diǎn)M,過點(diǎn)M作,且使得,進(jìn)而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點(diǎn)M,因?yàn)椋瑒t,過點(diǎn)M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.11、C【解析】根據(jù)題意,求出每個(gè)函數(shù)的導(dǎo)函數(shù),進(jìn)而判斷答案.【詳解】對(duì)A,,為奇函數(shù);對(duì)B,,為奇函數(shù);對(duì)C,,為偶函數(shù);對(duì)D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.12、A【解析】利用空間向量線性運(yùn)算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗(yàn)即可求解.【詳解】因?yàn)橹本€與平行,所以,解得或,又因?yàn)闀r(shí),,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點(diǎn)睛】(1)當(dāng)直線的方程中存在字母參數(shù)時(shí),不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件(2)在判斷兩直線平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論14、##【解析】根據(jù)給定條件探求出橢圓長(zhǎng)軸長(zhǎng)與其焦距的關(guān)系即可計(jì)算作答.【詳解】設(shè)橢圓長(zhǎng)軸長(zhǎng)為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點(diǎn)在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:15、【解析】利用導(dǎo)數(shù)法求解.【詳解】因?yàn)楹瘮?shù),所以,當(dāng)時(shí),,所以的單調(diào)增區(qū)間是,故答案為:16、【解析】先對(duì)函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時(shí)取等號(hào),即取等號(hào),因?yàn)?,所以函?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時(shí)參數(shù)的范圍,則可得當(dāng)命題為假命題,實(shí)數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對(duì)任意實(shí)數(shù)都有恒成立或;命題為真命題:關(guān)于的方程有實(shí)數(shù)根;(1)命題為假命題,則實(shí)數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實(shí)數(shù)的取值范圍為18、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項(xiàng)公式;(2)先求出通項(xiàng),再利用錯(cuò)位相減法求和即可.【小問1詳解】因,當(dāng)時(shí),,所以,當(dāng)時(shí),,又,解得,所以是以2為首項(xiàng),2為公比的等比數(shù)列,故【小問2詳解】因?yàn)?,所以,,,,所以,所?9、(1)(2)【解析】(1)由三角恒等變換公式化簡(jiǎn),根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故,面積最大值為20、(1)證明見解析(2)點(diǎn)F為線段AC的中點(diǎn)【解析】(1)由平面幾何知識(shí)證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點(diǎn)O,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點(diǎn)F,設(shè)=λ,運(yùn)用二面角的向量求解方法可求得,可得點(diǎn)F的位置.【小問1詳解】證明:因?yàn)樵陂L(zhǎng)方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點(diǎn)F,F(xiàn)為線段AC的中點(diǎn).由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點(diǎn)O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個(gè)法向量為.假設(shè)在線段AC上存在點(diǎn)F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點(diǎn)F為線段AC的中點(diǎn)時(shí),二面角A-BE-F的余弦值為.21、(1);(2).【解析】(1)由雙曲線標(biāo)準(zhǔn)方程的性質(zhì)得,即可求m的范圍;(2)當(dāng)q命題為真時(shí),方程無實(shí)根,判別式小于零,求得m的范圍,再由復(fù)合命題的真假得和一真一假,列出不等式組運(yùn)算可得解【小問1詳解】∵方程表示焦點(diǎn)在軸上的雙曲線,∴,解得【小問2詳解】若為真命題,則,解得,∵“”為假命題,”為真命題,∴一真一假當(dāng)真假時(shí),“”且“或”,則;當(dāng)假真時(shí),,則綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)語(yǔ)文個(gè)人述職報(bào)告錦集8篇
- 現(xiàn)代水墨課程設(shè)計(jì)教案
- 企業(yè)業(yè)務(wù)集成與協(xié)同平臺(tái)解決方案
- 養(yǎng)老院老人康復(fù)設(shè)施維修人員表彰制度
- 學(xué)校出納工作總結(jié)
- 網(wǎng)絡(luò)營(yíng)銷 第3版 教案匯 魏亞萍 1.2項(xiàng)目一定義、崗位 - 5-4信息流推廣
- 房地產(chǎn)總企業(yè)行政規(guī)章制度
- 建筑垃圾運(yùn)輸合同
- 培訓(xùn)場(chǎng)地租賃協(xié)議書模板
- 公寓租賃合作合同
- DL∕T 677-2018 發(fā)電廠在線化學(xué)儀表檢驗(yàn)規(guī)程
- 馬克思主義與社會(huì)科學(xué)方法論課后思考題答案全
- 部編《道德與法治》四年級(jí)上冊(cè)復(fù)習(xí)教案
- 幼兒園教師職稱五套試題及答案
- 幼兒園中班語(yǔ)言課件:《小花貓交朋友》
- 七年級(jí)歷史下冊(cè)教學(xué)工作計(jì)劃
- 《架空輸電線路直升機(jī)巡視技術(shù)導(dǎo)則》
- 熱工基礎(chǔ)課后答案超詳細(xì)版(張學(xué)學(xué))
- 食品工藝學(xué)(魯東大學(xué))智慧樹知到期末考試答案2024年
- 沙門菌感染的人工智能與機(jī)器學(xué)習(xí)應(yīng)用
- 電氣工程及其自動(dòng)化大學(xué)生職業(yè)規(guī)劃
評(píng)論
0/150
提交評(píng)論