山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省萊山一中2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B.C. D.2.設(shè)a,b,c非零實數(shù),且,則()A. B.C. D.3.在等差數(shù)列中,,,則公差A(yù).1 B.2C.3 D.44.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.5.直線與曲線相切于點,則()A. B.C. D.6.已知雙曲線的左、右焦點分別為,點A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.37.若、且,則下列式子一定成立的是()A. B.C. D.8.在平面直角坐標(biāo)系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.59.已知直線與圓相交于兩點,當(dāng)?shù)拿娣e最大時,的值是()A. B.C. D.10.一部影片在4個單位輪流放映,每個單位放映一場,不同的放映次序有()A.種 B.4種C.種 D.種11.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.12.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,圖形中的圓是正方形的內(nèi)切圓,點E,F(xiàn),G,H為對角線與圓的交點,若向正方形內(nèi)隨機(jī)投入一點,則該點落在陰影部分區(qū)域內(nèi)的概率為_________14.已知數(shù)列滿足:,,則______15.函數(shù)的圖象在點P()處的切線方程是,則_____16.已知向量與是平面的兩個法向量,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.18.(12分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo)之一,在新疆某地區(qū)成熟的長絨棉中隨機(jī)抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機(jī)抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達(dá)到特等品的概率.19.(12分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍20.(12分)已知圓,直線(1)當(dāng)直線與圓相交,求的取值范圍;(2)當(dāng)直線與圓相交于、兩點,且時,求直線的方程21.(12分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.22.(10分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求得集合A,再根據(jù)集合的交集運算可得選項.【詳解】解:因為,所以故選:B.2、C【解析】對于A、B、D:取特殊值否定結(jié)論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.3、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.4、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A5、A【解析】直線與曲線相切于點,可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點睛】本題考查了根據(jù)切點求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計算能力,屬于中檔題.6、B【解析】由雙曲線定義結(jié)合通徑公式、化簡得出,最后得出離心率.【詳解】,,,解得故選:B7、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項;構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項.【詳解】對于AB選項,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因為、且,則,即,A錯B對;對于CD選項,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無法確定與的大小關(guān)系,故CD都錯.故選:B.8、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點P,則,即到與兩點距離之和的最小值,當(dāng)、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎(chǔ)題.9、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關(guān)于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當(dāng),即時,取得最大值.故選:C.10、C【解析】根據(jù)題意得到一部影片在4個單位輪流放映,相當(dāng)于四個單位進(jìn)行全排列,即可得到答案.【詳解】一部影片在4個單位輪流放映,相當(dāng)于四個單位進(jìn)行全排列,所以不同的放映次序有種,故選:C11、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A12、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設(shè)正方形的邊長為2,則陰影部分的面積為,故若向正方形內(nèi)隨機(jī)投入一點,則該點落在陰影部分區(qū)域內(nèi)概率為故答案為:.14、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因為,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:16、【解析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)代入點坐標(biāo),結(jié)合離心率,以及即得解;(2)設(shè)直線方程,與橢圓聯(lián)立,轉(zhuǎn)化為,結(jié)合韋達(dá)定理和判別式,分析即得解【小問1詳解】由題意可知:,解得:橢圓的標(biāo)準(zhǔn)方程為:【小問2詳解】①當(dāng)直線斜率不存在,方程為,則,.②當(dāng)直線斜率存在時,設(shè)直線方程為,聯(lián)立得:.由得:.設(shè),,則,,又,,,則,,所以,所以,解得:,又,綜上所述:的取值范圍為.18、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達(dá)到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達(dá)到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達(dá)到特等品的概率19、(1)(2)【解析】(1)先求出,由得到,得到不等式組,求出m的取值范圍;(2)根據(jù)充分不必要條件得到是的真子集,分與兩種情況進(jìn)行求解,求得m的取值范圍.【小問1詳解】,解得:,故,因為,所以,故,解得:,所以m的取值范圍是.【小問2詳解】若“x∈B”是“x∈A”的充分不必要條件,則是的真子集,當(dāng)時,,解得:,當(dāng)時,需要滿足:或,解得:綜上:m取值范圍是20、(1);(2)或【解析】(1)根據(jù)直線與圓的位置關(guān)系,利用幾何法可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍;(2)根據(jù)勾股定理求出圓心到直線的距離,再利用點到直線的距離公式可得出關(guān)于實數(shù)的值,即可求出直線的方程.【小問1詳解】解:圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,因為直線與圓相交,則,解得.【小問2詳解】解:因為,則圓心到直線的距離為,由點到直線的距離公式可得,整理得,解得或.所以,直線的方程為或.21、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時,設(shè)其方程代入橢圓方程利用韋達(dá)定理求得兩根關(guān)系式,進(jìn)而求得的表達(dá)式,最后求比值即可;當(dāng)直線斜率為0時直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當(dāng)直線斜率不為0時,設(shè)其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點的坐標(biāo)為,則弦的垂直平分線為,令,得,,又,;②當(dāng)直線斜率為0時,則,,則.綜合①②得是定值且為4【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論