版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年遼寧省沈陽市高一下冊期中數(shù)學(xué)質(zhì)量檢測模擬試題一、單選題1.在邊長為1的正方形ABCD中,向量,則向量的夾角為(
)A. B. C. D.【答案】B【分析】由向量關(guān)系知E為DC的中點(diǎn),F(xiàn)為BC靠近B端的三等分點(diǎn),可以求得向量的模長,然后求得數(shù)量積,從而求得向量夾角.【詳解】由向量關(guān)系知E為DC的中點(diǎn),F(xiàn)為BC靠近B端的三等分點(diǎn),則,,,則由知,則故向量的夾角為故選:B2.在中,角所對的邊分別為,若,則角的取值范圍是(
)A. B. C. D.【答案】C【分析】由已知,整理可得:,由余弦定理可解得,結(jié)合為三角形內(nèi)角即可解得的取值范圍.【詳解】解:因?yàn)?,整理可得:,由余弦定理可得:,由為三角形?nèi)角,即,可得:.故選:C.3.下列各式正確的是(
)A. B.C. D.【答案】D【分析】根據(jù)三角函數(shù)的單調(diào)性以及每個選項對應(yīng)角所在的象限逐項分析.【詳解】對于A,,在第二象限是增函數(shù),,錯誤;對于B,,,,錯誤;對于C,,在第一象限是增函數(shù),,錯誤;對于D,,,,正確;故選:D.4.復(fù)數(shù)滿足,則的范圍為(
)A. B. C. D.【答案】C【分析】設(shè),由得,后可得答案.【詳解】設(shè),則.則.則.故選:C5.為捍衛(wèi)國家南海主權(quán),我海軍在南海海域進(jìn)行例行巡邏.某天,一艘巡邏艦從海島出發(fā),沿南偏東的方向航行40海里后到達(dá)海島,然后再從海島出發(fā),沿北偏東的方向航行了海里到達(dá)海島.若巡邏艦從海島出發(fā)沿直線到達(dá)海島,則航行的方向和路程(單位:海里)分別為(
)A.北偏東, B.北偏東,C.北偏東, D.北偏東,【答案】C【分析】在中,,,,故可由余弦定理求出邊AC的長度,在中,可由正弦定理建立方程,求出.【詳解】據(jù)題意知,在中,,海里,海里,所以,所以海里,又,所以,又因?yàn)闉殇J角,所以,所以航行的方向和路程分別為北偏東,海里.故選:C.【點(diǎn)睛】本題考查解三角形的實(shí)際應(yīng)用,考查邏輯思維能力和運(yùn)算求解能力,屬于??碱}.6.函數(shù),將圖像向右平移個單位長度得到函數(shù)的圖像,若對任意,都有成立,則的值為(
)A. B. C. D.【答案】A【分析】先求出的解析式,再求出,由題意是的最大值,運(yùn)用輔助角公式求出的最大值即可.【詳解】依題意,,,其中,∴的最大值為,依題意有,即,;故選:A.7.函數(shù)與的圖像相交于兩點(diǎn),則中點(diǎn)坐標(biāo)為(
)A. B. C. D.【答案】A【分析】根據(jù)和的對稱性確定MN中點(diǎn)的位置即可.【詳解】由于,所以和都是關(guān)于點(diǎn)對稱的,所以M,N也是關(guān)于對稱的,M,N的中點(diǎn)就是;故選:A.8.在中,內(nèi)角的對邊分別為,且邊上的中線,則(
)A.3 B. C.1或2 D.2或3【答案】C【分析】由正弦定理及可得,在中由余弦定理列式可得,在中由余弦定理可得,綜上即可求解c【詳解】由得,∴,∵,∴,即.在中,由余弦定理可得,整理得,在中,,∴,即(*),當(dāng)時,(*)式可解得,;當(dāng)時,(*)式可解得,;故選:C二、多選題9.復(fù)數(shù),i是虛數(shù)單位,則下列結(jié)論正確的是(
)A. B.z的共軛復(fù)數(shù)為C.z的實(shí)部與虛部之和為2 D.z在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于第一象限【答案】CD【分析】根據(jù)復(fù)數(shù)的四則運(yùn)算,整理復(fù)數(shù),再逐一分析選項,即得.【詳解】由題得,復(fù)數(shù),可得,則A不正確;的共軛復(fù)數(shù)為,則B不正確;的實(shí)部與虛部之和為,則C正確;在復(fù)平面內(nèi)的對應(yīng)點(diǎn)為,位于第一象限,則D正確.綜上,正確結(jié)論是CD.故選:CD【點(diǎn)睛】本題考查復(fù)數(shù)的定義,共軛復(fù)數(shù)以及復(fù)數(shù)的模,考查知識點(diǎn)全面.10.已知平面向量,,則下列說法正確的是(
)A. B.C.向量與的夾角為 D.向量在上的投影向量為【答案】BD【分析】根據(jù)向量模長的坐標(biāo)計算即可判斷A,根據(jù)數(shù)量積的坐標(biāo)運(yùn)算可判斷B,由夾角公式可判斷C,由投影向量的求解公式可判斷D.【詳解】,所以,故A錯誤;,故B正確;,,,,故C錯誤;向量在上的投影向量為,故D正確.故選:BD11.已知函數(shù),下列命題中的真命題有(
)A.,為奇函數(shù)B.,對恒成立C.,,若,則的最小值為D.,,若,則【答案】BC【分析】先化簡函數(shù);作出函數(shù)的圖象,再逐項判斷,;由函數(shù)的圖象是的圖象向左或向右平移個單位,它不會是奇函數(shù)的,故A錯誤;由,得,,,;又,取或時成立B正確;由時,得的最小值為,所以C正確;當(dāng)時,,所以D錯誤.【詳解】由題意;∵的圖象如圖所示;函數(shù)的圖象是的圖象向左或向右平移個單位,它不會是奇函數(shù)的,故A錯誤;若,∴,∴,∴,;又,∴取或時,∴對恒成立,故B正確;時,的最小值為,故C正確;當(dāng)時,故D錯誤;故選:BC.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象和性質(zhì),還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.12.在中,角、、所對的邊分別為、、,且,則下列說法正確的是(
)A.若,則的外接圓的面積為B.若,則的面積的最大值為C.若,且為銳角三角形,則邊的長度的取值范圍為D.若,且,為的內(nèi)心,則的面積為【答案】BCD【分析】根據(jù)條件求出.選項A:根據(jù)條件求角,根據(jù)正弦定理求外接圓的半徑,從而求外接圓的面積;選項B:把的面積表示成的一個函數(shù),利用二次函數(shù)求最值;選項C:根據(jù)正弦定理把邊表示為,利用為銳角三角形求角的范圍,從而求邊的范圍;選項D:利用正弦定理求出角,從而判斷出是直角三角形,利用直角三角形內(nèi)切圓半徑公式求的內(nèi)切圓半徑,從而求的面積.【詳解】因?yàn)?,所以由正弦定理,?即,因?yàn)椋?,且,所?選項:若,則,所以的外接圓的直徑,所以,所以的外接圓的面積為,選項A錯誤;選項:若,則,又因?yàn)?,所以由余弦定理,得,即,所以,所以,所以?dāng)時,取最大值,且最大值為,所以選項B正確;選項:由正弦定理,得,即,因?yàn)闉殇J角三角形,所以,即,所以,所以,故選項C正確;選項:因?yàn)?,所以,因?yàn)?,所以,所以由正弦定理,得,即,所以,即,所以,所以,又因?yàn)椋?,,,,即是直角三角形,所以?nèi)切圓的半徑為,所以的面積為,選項D正確.故選:BCD.三、填空題13.已知,點(diǎn)為角終邊上的一點(diǎn),且,則角________.【答案】.【分析】由三角函數(shù)定義可得,已知等式用誘導(dǎo)公式變形得可得,結(jié)合角的大小及范圍求得,然后由兩角差的正弦公式求得后可得.【詳解】∵,∴,∴,.又,∴.∵,∴,∴,∴.∵,∴.故答案為:.【點(diǎn)睛】本題考查已知三角函數(shù)值求角,要求角,一般先求出這個角的某個三角函數(shù)值,這里有一個技巧,由角的范圍(也可先縮小范圍),確定在此范圍內(nèi)三角函數(shù)是單調(diào)的函數(shù)值,這樣所求角唯一易得.14.已知函數(shù)的部分圖像如圖所示,且,則__________.【答案】-【分析】根據(jù)圖像求出的解析式即可.【詳解】由圖可知:,,又,即,;故答案為:-.15.設(shè)復(fù)數(shù)滿足,且使得關(guān)于的方程有實(shí)根,則這樣的復(fù)數(shù)的和為______.【答案】【解析】首先設(shè)(,且),代入方程,化簡為,再分和兩種情況求驗(yàn)證是否成立.【詳解】設(shè),(,且)則原方程變?yōu)?所以,①且,②;(1)若,則解得,當(dāng)時①無實(shí)數(shù)解,舍去;從而,此時或3,故滿足條件;(2)若,由②知,或,顯然不滿足,故,代入①得,,所以.綜上滿足條件的所以復(fù)數(shù)的和為.故答案為:【點(diǎn)睛】思路點(diǎn)睛:本題考查復(fù)系數(shù)二次方程有實(shí)數(shù)根問題,關(guān)鍵是設(shè)復(fù)數(shù)后代入方程,再進(jìn)行整理轉(zhuǎn)化復(fù)數(shù)的代數(shù)形式,注意實(shí)部和虛部為0,建立方程求復(fù)數(shù).16.如圖所示,已知在四邊形ABCD中,,,,且點(diǎn)A、B、C、D共圓,點(diǎn)M,N分別是AD和BC的中點(diǎn),則的值為______.【答案】##【分析】應(yīng)用余弦定理及圓的性質(zhì)可得、,再由,應(yīng)用向量數(shù)量積的運(yùn)算律求值即可.【詳解】由題設(shè),則,在△中,在△中,所以,可得,故,同理得,又,M,N分別是AD和BC的中點(diǎn),所以,所以.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:應(yīng)用余弦定理及圓的性質(zhì)求四邊形相關(guān)內(nèi)角的余弦值,再轉(zhuǎn)化求值.四、解答題17.已知為銳角,.(1)求的值;(2)求函數(shù)的對稱中心和單調(diào)區(qū)間.【答案】(1);(2)對稱中心為,單調(diào)增區(qū)間為,無減區(qū)間.【分析】(1)利用誘導(dǎo)公式化簡可得,即求;(2)利用正切函數(shù)的性質(zhì)即得.【詳解】(1)∵,∴,又為銳角,∴;(2)由題知函數(shù),由,得,∴函數(shù)的對稱中心為;由,得,∴函數(shù)的單調(diào)增區(qū)間為,無減區(qū)間.18.已知z為復(fù)數(shù),和均為實(shí)數(shù),其中是虛數(shù)單位.(1)求復(fù)數(shù)z和;(2)若在第四象限,求m的范圍.【答案】(1),;(2)【分析】(1)設(shè),依據(jù)題設(shè),建立方程求出,即可求得z,再求其模;(2)先求出,再根據(jù)題意建立不等式組求解即可:【詳解】(1)設(shè),則,由為實(shí)數(shù),得,則,由為實(shí)數(shù),得,則,∴,則;(2)由在第四象限,得,解得或,故m的取值范圍為.【點(diǎn)睛】思路點(diǎn)睛:本題考查復(fù)數(shù)的有關(guān)概念及加減乘除等基本運(yùn)算等有關(guān)知識的綜合運(yùn)用,考查利用復(fù)數(shù)在復(fù)平面上對應(yīng)點(diǎn)所在象限求參數(shù)范圍,求解時先設(shè),然后依據(jù)題設(shè)建立方程求出,屬于基礎(chǔ)題.19.的內(nèi)角,,的對邊分別是,,,已知.(1)求;(2)若是銳角三角形,,求周長的取值范圍.【答案】(1)(2)【分析】(1)利用正弦定理和三角恒等變換即可求解;(2)結(jié)合已知條件利用正弦定理表示出,再利用三角恒等變換求值即可.【詳解】(1)由正弦定理得,,在中,,故,∴,∴,,從而,,∵,∴;(2)由正弦定理得,,,其中為的外接圓半徑,故,因?yàn)槭卿J角三角形,,,即且,故,,所以,從而,故,故三角形周長的取值范圍為.20.函數(shù)圖象的一條對稱軸為,一個零點(diǎn)為,最小正周期滿足.(1)求的解析式;(2)若對任意恒成立,求的最大值.【答案】(1);(2).【分析】(1)首先根據(jù)周期的范圍求出,然后再結(jié)合函數(shù)的對稱軸和零點(diǎn)即可求出和的值,從而可求出函數(shù)的解析式;(2)首先根據(jù)的解析式把條件轉(zhuǎn)化為,再結(jié)合變名的誘導(dǎo)公式及余弦的二倍角公式即可得到,即得到,結(jié)合正弦函數(shù)的圖象即可求出的取值范圍,從而可求的最大值.【詳解】(1)因?yàn)楹瘮?shù)的最小正周期滿足,所以,即;因?yàn)楹瘮?shù)圖象的一條對稱軸為,所以①,因?yàn)楹瘮?shù)的一個零點(diǎn)為,所以②,②①,得,所以當(dāng)時,,因?yàn)?,所以把代入①,?所以.(2)因?yàn)?,所以由,得,即,所以,即,所以,即,所以,所以,即,所以的最大值?21.在平面四邊形中,.(1)求的面積;(2)若,求的值;【答案】(1);(2)8.【分析】(1)在中,由余弦定理求得得,再根據(jù)三角形的面積公式可求得答案;(2)在中,由正弦定理求得,再由正弦和角公式求得,在中,根據(jù)正弦定理求得,由此可求得答案.【詳解】(1)解:在中,,所以,解得(舍去),所以;(2)解:在中,,所以,即,解得,又,所以,所以,又,所以,所以,在中,,即,所以,所以.22.借助國家實(shí)施鄉(xiāng)村振興政策支持,某網(wǎng)紅村計劃在村內(nèi)扇形荷花水池OAB中修建荷花觀賞臺,助推鄉(xiāng)村旅游經(jīng)濟(jì).如圖所示,扇形荷花水池OAB的半徑為20米,圓心角為.設(shè)計的荷花觀賞臺由兩部分組成,一部分是矩形觀賞臺MNPQ,另一部分是三角形觀賞臺AOC.現(xiàn)計劃在弧AB上選取一點(diǎn)M,作MN平行OA交OB于點(diǎn)N,以MN為邊在水池中修建一個矩形觀賞臺MNPQ,NP長為5米;同時在水池岸邊修建一個滿足且的三角形觀賞臺AOC,記.(1)當(dāng)時,求矩形觀賞臺MNPQ的面積;(2)求整個觀賞臺(包括矩形觀賞臺和三角形觀賞臺兩部分)面積的最大值.【答案】(1)平方米;(2)212.5平方米.【分析】(1)過M作OA的垂線,交AO于點(diǎn)E,過N作OA的垂線,交AO于點(diǎn)F,分別計算出MN、NP,即可求出矩形MNPQ的面積(2)由題意可知,,利用正弦定理表示出各邊,把觀賞臺面積表示為x的函數(shù),,利用三角函數(shù)求最值.【詳解】(1)當(dāng)時,過M作OA的垂線,交AO于點(diǎn)E.則..過N作OA的垂線,交AO于點(diǎn)F,.∵,,∴..矩形MNPQ的面積平方米.所以矩形觀賞臺MNPQ的面積平方米.(2)由題意可知,,,,,在中,由,得.矩形MNPQ的面積.觀賞臺的面積.整個觀賞臺面積.設(shè),,∴..∴.∴.當(dāng)時,整個觀賞臺觀賞臺S取得最大值為212.5平方米.∴整個觀賞臺的面積S的最大值為212.5平方米.【點(diǎn)睛】數(shù)學(xué)建模是高中數(shù)學(xué)六大核心素養(yǎng)之一,在高中數(shù)學(xué)中,應(yīng)用題是常見考查形式:(1)求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型;(2)三角函數(shù)型應(yīng)用題根據(jù)題意正確畫圖,把有關(guān)條件在圖形中反映,利用三角知識是關(guān)鍵.2023-2024學(xué)年遼寧省沈陽市高一下冊期中數(shù)學(xué)質(zhì)量檢測模擬試題一.選擇題:本題共8個小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.若,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【正確答案】B【分析】直接根據(jù)角所在象限判斷方法即可得到答案.【詳解】因?yàn)?,故是第二象限角,故選:B.2.已知,則與的夾角為()A. B.C. D.【正確答案】D【分析】分別求出與的數(shù)量積和模,代入夾角公式即得.【詳解】∵∴又∵與的夾角范圍為∴與的夾角為.故選:D3.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)⒁宰鴺?biāo)原點(diǎn)O為圓心的圓的周長和面積同時平分的函數(shù)稱為此圓的“優(yōu)美函數(shù)”,則下列函數(shù)中一定是“優(yōu)美函數(shù)”的為()A. B.C. D.【正確答案】C【分析】根據(jù)題意可知優(yōu)美函數(shù)圖像過坐標(biāo)原點(diǎn),圖像關(guān)于坐標(biāo)原點(diǎn)對稱,是奇函數(shù),再分別檢驗(yàn)四個選項即可得出正確選項.【詳解】根據(jù)優(yōu)美函數(shù)的定義可知,優(yōu)美函數(shù)的圖像過坐標(biāo)原點(diǎn),圖像關(guān)于坐標(biāo)原點(diǎn)對稱,是奇函數(shù),對于A,不是奇函數(shù),A選項錯誤;對于B,不是奇函數(shù),B選項錯誤;對于C,的定義域?yàn)?,且是奇函?shù),C項正確;對于D,的定義域?yàn)?,所以圖像不經(jīng)過坐標(biāo)原點(diǎn),D選項錯誤;故選:C.4.已知函數(shù)的部分圖象如圖所示,則()A., B., C., D.,【正確答案】A【詳解】結(jié)合圖象,是個周期,故,故,而,解得:故選A.5.下列各式中,值為的是A. B.C. D.【正確答案】C【詳解】對于選項A:;對于選項B:;對于選項C:;對于選項D:;故選C6.等邊的邊長為1,點(diǎn)C在直線AD上,且.若B為AC的中點(diǎn),則()A. B. C. D.【正確答案】B【分析】由三點(diǎn)共線求t值,然后利用向量的模長公式和數(shù)量積公式計算即可得到答案.【詳解】因?yàn)锳,C,D三點(diǎn)共線,,所以.因?yàn)锽為AC的中點(diǎn),所以,所以故選:B7.已知,則等于()A. B. C. D.【正確答案】A【分析】先利用結(jié)合得出的值,然后利用二倍角公式得到,即,又,將代入便可解出答案.【詳解】因?yàn)椋?,則,所以,又,所以,所以.故選:A.本題考查誘導(dǎo)公式,考查正弦、余弦的二倍角公式及其應(yīng)用,難度一般,解答時公式的變形運(yùn)用是關(guān)鍵.8.已知平面內(nèi),,,且,則的最大值等于A.13 B.15 C.19 D.21【正確答案】A【分析】令,,將,表示成,,即可將表示成,展開可得:,再利用基本不等式即可求得其最大值.【詳解】令,,則又,所以當(dāng)且僅當(dāng)時,等號成立.故選:A本題主要考查了平面向量基本定理的應(yīng)用及利用基本不等式求最值,考查轉(zhuǎn)化能力及計算能力,屬于難題.二.選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求,全部選對的得5分,部分選對的得2分,有選錯的得0分.9.給出下列四個命題,其中是真命題的為()A.如果是第一或第四象限角,那么B.如果,那么是第一或第四象限角C.終邊在軸上的角的集合為D.已知扇形的面積為1,周長為4,則扇形的圓心角(正角)的弧度數(shù)為2【正確答案】ACD【分析】對于A,利用三角函數(shù)的定義即可判斷;對于B,舉反例即可;對于C,直接寫出對應(yīng)角的集合;對于D,利用扇形的面積和弧長公式即可【詳解】對于A,若θ是第一或第四象限角,根據(jù)三角函數(shù)的定義可得,故正確;對于B,若,則,但此時θ不是第一或第四象限角,故錯誤;對于C,終邊在x軸上的角的集合為,故正確;對于D,設(shè)扇形的圓心角的弧度數(shù)為,半徑為,則,解得,故正確故選:ACD.10.已知函數(shù),則下列說法正確的是()A.值域是R B.在定義域內(nèi)是增函數(shù)C.的最小正周期是 D.的解集是【正確答案】AC【分析】根據(jù)正切函數(shù)的性質(zhì),即可判斷A項;求出函數(shù)的單調(diào)遞增區(qū)間,即可判斷B項;由周期公式,求出周期,即可判斷C項;由時,由的解,即可得出,求解不等式即可得出解集,判斷D項.【詳解】對于A項,根據(jù)正切函數(shù)的性質(zhì),可知的值域是R,故A項正確;對于B項,由可得,,所以的定義域?yàn)?由可得,,所以在每一個區(qū)間上單調(diào)遞增,故B項錯誤;對于C項,由已知可得,的最小正周期是,故C項正確;對于D項,當(dāng)時,由,可得.則由可得,,所以的解集是,故D項錯誤.故選:AC.11.下列說法正確的是()A.已知向量,,若∥,則B.若向量,共線,則C.已知正方形ABCD的邊長為1,若點(diǎn)M滿足,則D.若O是的外心,,,則的值為【正確答案】CD【分析】對于A,由兩向量平行的坐標(biāo)運(yùn)算計算即可;對于B,分向量,同向和向量,反向計算,即可判斷;對于C,由題意可得為的三等分點(diǎn)中靠近的點(diǎn),于是可得,再由向量的四則運(yùn)算法則及數(shù)量積運(yùn)算計算即可;對于D,由題可得,(為的外接圓半徑),進(jìn)而可得,即有,即可判斷.【詳解】解:對于A,因?yàn)?,,∥,所以,解得,故錯誤;對于B,因?yàn)橄蛄?,共線,當(dāng)向量,同向時,則有;當(dāng)向量,反向時,則有,故錯誤;對于C,因?yàn)椋詾榈娜确贮c(diǎn)中靠近的點(diǎn),所以,,所以,故正確;對于D,因?yàn)镺是的外心,所以(為的外接圓半徑),又因?yàn)?所以,即,①同理可得,②由①-②可得:,即有,故正確.故選:CD.12.已知函數(shù),有下列四個結(jié)論,其中正確的結(jié)論為()A.在區(qū)間上單調(diào)遞增B.不是的一個周期C.當(dāng)時,的值域?yàn)镈.的圖像關(guān)于軸對稱【正確答案】BCD【分析】對于A,通過舉反例取,得出單調(diào)遞減;對于B,根據(jù)周期的定義,即可判斷;對于C,由得出的解析式,設(shè),即可得出值域;對于D,由奇偶函數(shù)的定義判斷出為偶函數(shù),即可判斷D.【詳解】因?yàn)槭巧系呐己瘮?shù),所以,對于A:當(dāng)時,,設(shè),則,在上單調(diào)遞減,又在上單調(diào)遞增,所以在單調(diào)遞減,故A錯誤;對于B:,故B錯誤;對于C:當(dāng)時,,設(shè),則,因?yàn)?,所以,故C正確;對于D:定義域?yàn)椋驗(yàn)?,所以為偶函?shù),圖像關(guān)于軸對稱,故D正確;故選:BCD.三.填空題:本題共4小題,每小題5分,共20分.13.已知向量,的夾角為,,,則______.【正確答案】【分析】根據(jù)計算可得結(jié)果.【詳解】.故答案為.14.已知,,如果與的夾角是鈍角,則的取值范圍是___________【正確答案】【分析】與的夾角是鈍角,則,根據(jù)向量夾角公式列不等式,由此求得的取值范圍.【詳解】設(shè)兩個向量的夾角為,依題意可知為鈍角,則,即,且由得或,由于且,所以實(shí)數(shù)的取值范圍是.故本小題主要考查根據(jù)向量夾角求參數(shù),注意利用時,要排除共線反向情況,屬于中檔題.15.若,,則________.【正確答案】【分析】根據(jù)以及求出,根據(jù)二倍角的正弦、余弦公式求出,,根據(jù)及兩角差的正弦公式可得結(jié)果.【詳解】因?yàn)?,,?dāng)時,,又,所以,所以,所以,,所以.故答案為.本題考查了同角三角函數(shù)的基本關(guān)系式,考查了二倍角的正弦、余弦公式,考查了兩角差的正弦公式,拆角:是解題關(guān)鍵.屬于中檔題.16.設(shè)函數(shù)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則______.【正確答案】##-0.5【分析】根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)是上的奇函數(shù),則,即,,則,所以,其定義域?yàn)殛P(guān)于原點(diǎn)對稱,,則此時為奇函數(shù),又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,又因?yàn)?,則時,,則,則故答案為.四.解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知是單位圓上的點(diǎn),點(diǎn)是單位圓與軸正半軸的交點(diǎn),點(diǎn)在第二象限,記且.(1)求點(diǎn)的坐標(biāo);(2)求的值.【正確答案】(1)(2)【分析】(1)根據(jù)角的終邊與單位交點(diǎn)為,結(jié)合同角三角函數(shù)關(guān)系和,可得點(diǎn)坐標(biāo);(2)利用誘導(dǎo)公式化簡,將(1)中結(jié)果代入,即可得到答案.【小問1詳解】解:設(shè)點(diǎn)坐標(biāo)為,則,因?yàn)辄c(diǎn)在第二象限,所以,點(diǎn)坐標(biāo)為.【小問2詳解】解:由誘導(dǎo)公式可得由(1)知,所以,所以.18.如圖,扇形OAB的圓心角為,,點(diǎn)M為線段OA的中點(diǎn),點(diǎn)N為弧AB上任意一點(diǎn).(1)若,試用向量,表示向量;(2)求的取值范圍.【正確答案】(1);(2).【分析】(1)以O(shè)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系xOy,求得,,,根據(jù),列出方程組,求得的值,即可求解;(2)設(shè),則,根據(jù)向量的數(shù)量積的運(yùn)算公式,求得,結(jié)合三角函數(shù)性質(zhì),即可求解.【詳解】(1)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系xOy,則,,,,所以,,.設(shè),則,解得,所以.(2)設(shè),則,,則,,所以,其中,(為銳角).因?yàn)?,所以,則,,所以的取值范圍為.本題主要考查了平面向量的基本定理,以及向量的數(shù)量積的坐標(biāo)運(yùn)算,其中解答中熟記平面向量的基本定理和向量的數(shù)量積的坐標(biāo)運(yùn)算公式是解答的關(guān)鍵,著重考查推理與運(yùn)算能力.19.已知.(1)求的值;(2)已知,,且,求的值.【正確答案】(1);(2).【分析】(1)先求出,再化簡即得解;(2)先求出,再求出,求出,即得解.【詳解】(1)由已知得,所以(2)由,可得,則.因?yàn)?,所以,又,則,因?yàn)?,,則,則,所以.易錯點(diǎn)睛:本題容易得出兩個答案,或.之所以得出兩個答案,是沒有分析縮小的范圍,從而得到.對于求角的大小的問題,一般先求出角的某三角函數(shù)值,再求出角的范圍,再得到角的大小.20.已知的單調(diào)遞增區(qū)間為,且函數(shù)圖像的相鄰對稱軸之間的距離為,求:(1)的解析式;(2)若的圖像向左平移個單位得到,求的單調(diào)遞增區(qū)間;(3)若且,求的取值范圍.【正確答案】(1)(2)(3)或【分析】(1)由圖像的相鄰對稱軸之間的距離為得出,再得出的單調(diào)遞增區(qū)間結(jié)合已知即可求出;(2)首先得出,用整體法求出的單調(diào)遞增區(qū)間;(3)首先由奇偶函數(shù)的定義得出為偶函數(shù),分區(qū)間討論,當(dāng)時和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)物聯(lián)網(wǎng)時代的網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計與平臺投資方案
- 2025年度私人診所醫(yī)療檔案管理人員聘用合同3篇
- 安保人員專業(yè)技能培訓(xùn)與實(shí)踐應(yīng)用研究
- 2025年度肉雞買賣:合同違約處理與賠償計算3篇
- 小學(xué)數(shù)學(xué)教育中心理健康教育資源的整合與應(yīng)用
- 教育心理學(xué)在培養(yǎng)孩子社交能力中的應(yīng)用研究
- 教育心理視角下的學(xué)生身體素質(zhì)培養(yǎng)策略
- 教育機(jī)構(gòu)教室裝修的現(xiàn)代簡約風(fēng)格應(yīng)用
- 小學(xué)生綜合實(shí)踐活動教程
- 實(shí)驗(yàn)室人才培養(yǎng)體系的設(shè)計與實(shí)施
- 24年追覓在線測評28題及答案
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- 部編版初中語文七至九年級語文教材各冊人文主題與語文要素匯總一覽表合集單元目標(biāo)能力點(diǎn)
- 工程項目收入情況統(tǒng)計表
- GB/T 29490-2013企業(yè)知識產(chǎn)權(quán)管理規(guī)范
- GB/T 14436-1993工業(yè)產(chǎn)品保證文件總則
- 湖南省鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心地址醫(yī)療機(jī)構(gòu)名單目錄
- 《中外資產(chǎn)評估準(zhǔn)則》課件第6章 英國評估準(zhǔn)則
- FZ∕T 63006-2019 松緊帶
- 罐區(qū)自動化系統(tǒng)總體方案(31頁)ppt課件
- 工程建設(shè)項目內(nèi)外關(guān)系協(xié)調(diào)措施
評論
0/150
提交評論