云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第1頁
云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第2頁
云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第3頁
云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第4頁
云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省施甸縣第一中學2023年數(shù)學高二上期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.2.已知雙曲線的兩個焦點,,是雙曲線上一點,且,,則雙曲線的標準方程是()A. B.C. D.3.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.4.在長方體中,,,分別是棱,的中點,則異面直線,的夾角為()A. B.C. D.5.平行六面體中,若,則()A. B.1C. D.6.橢圓:的左焦點為,橢圓上的點與關于坐標原點對稱,則的值是()A.3 B.4C.6 D.87.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.8.已知實數(shù)a,b,c滿足,,則a,b,c的大小關系為()A. B.C. D.9.設為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構不成三角形10.已知拋物線上一點到焦點的距離為3,準線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.11.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.5012.若直線a不平行于平面,則下列結論正確的是()A.內的所有直線均與直線a異面 B.直線a與平面有公共點C.內不存在與a平行的直線 D.內的直線均與a相交二、填空題:本題共4小題,每小題5分,共20分。13.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”,平面螺旋便是以一個固定點開始向外逐圈旋繞而形成的曲線,如下圖(1)所示.如圖(2)所示陰影部分也是一個美麗的螺旋線型的圖案,它的畫法是這樣的:正方形ABCD的邊長為4,取正方形ABCD各邊的四等分點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的四等分點M,N,P,Q,作第3個正方形MNPQ,依此方法一直繼續(xù)下去,就可以得到陰影部分的圖案.如圖(2)陰影部分,設直角三角形AEH面積為,直角三角形EMQ面積為,后續(xù)各直角三角形面積依次為,…,,若數(shù)列的前n項和恒成立,則實數(shù)的取值范圍為______.14.設過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______15.已知點是橢圓上任意一點,則點到直線距離的最小值為______16.將某校全體高一年級學生期末數(shù)學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調查,采用按成績分層隨機抽樣,則應抽取成績不少于60分的學生人數(shù)為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角所對的邊長分別為,是1和的等差中項(1)求角;(2)若的平分線交于點,且,求的面積18.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調區(qū)間;(2)若,討論函數(shù)零點個數(shù)19.(12分)直線經過點,且與圓相交與兩點,截得的弦長為,求的方程.20.(12分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程21.(12分)設P是拋物線上一個動點,F(xiàn)為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.22.(10分)2020年3月20日,中共中央、國務院印發(fā)了《關于全面加強新時代大中小學勞動教育的意見》(以下簡稱《意見》),《意見》中確定了勞動教育內容要求,要求普通高中要注重圍繞豐富職業(yè)體驗,開展服務性勞動、參加生產勞動,使學生熟練掌握一定勞動技能,理解勞動創(chuàng)造價值,具有勞動自立意識和主動服務他人、服務社會的情懷.我市某中學鼓勵學生暑假期間多參加社會公益勞動,在實踐中讓學生利用所學知識技能,服務他人和社會,強化社會責任感,為了調查學生參加公益勞動的情況,學校從全體學生中隨機抽取100名學生,經統(tǒng)計得到他們參加公益勞動的總時間均在15~65小時內,其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計這100名學生參加公益勞動的總時間的平均數(shù)(同一組中的每一個數(shù)據(jù)可用該組區(qū)間的中點值代替);(2)學校要在參加公益勞動總時間在、這兩組的學生中用分層抽樣的方法選取5人進行感受交流,再從這5人中隨機抽取2人進行感受分享,求這2人來自不同組的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由離心率得,再由轉化為【詳解】因為,所以8a2=9b2,所以故選:D.2、D【解析】根據(jù)條件設,,由條件求得,即可求得雙曲線方程.【詳解】設,則由已知得,,又,,又,,雙曲線的標準方程為.故選:D3、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、C【解析】設出長度,建立空間直角坐標系,根據(jù)向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標系,設,,,,,,所以,,設異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.5、D【解析】根據(jù)空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.6、D【解析】令橢圓C的右焦點,由已知條件可得四邊形為平行四邊形,再利用橢圓定義計算作答.【詳解】令橢圓C的右焦點,依題意,線段與互相平分,于是得四邊形為平行四邊形,因此,而橢圓:的長半軸長,所以.故選:D7、B【解析】根據(jù)向量和直線l的方向向量的關系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.8、A【解析】利用對數(shù)的性質可得,,再構造函數(shù),利用導數(shù)判斷,再構造,利用導數(shù)判斷出函數(shù)的單調性,再由單調性即可求解.【詳解】由題意可得均大于,因為,所以,所以,且,令,,當時,,所以在單調遞增,所以,所以,即,令,,當時,,所以在上單調遞減,由,,所以,所以,綜上所述,.故選:A9、D【解析】根據(jù)橢圓方程求出,然后結合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構成三角形.故選:D.10、C【解析】先由已知結合拋物線的定義求出,從而可得拋物線的準線方程,則可求出準線l與兩條漸近線的交點分別為,然后由題意可得,進而可求出雙曲線的離心率詳解】依題意,拋物線準線,由拋物線定義知,解得,則準線,雙曲線C的兩條漸近線為,于是得準線l與兩條漸近線的交點分別為,原點為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C11、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.12、B【解析】根據(jù)題意可得直線a與平面相交或在平面內,結合線面的位置關系依次判斷選項即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內.A:內的所有直線均與直線a異面錯誤,也可能相交,故A錯誤;B:直線a與平面相交或直線a在平面內都有公共點,故B正確;C:平面內不存在與a平行的直線,錯誤,當直線a在平面內就存在與a平行的直線,故C錯誤;D:平面內的直線均與a相交,錯誤,也可能異面,故D錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】先求正方形邊長的規(guī)律,再求三角形面積的規(guī)律,從而就可以求和了,再解不等式即可求解.【詳解】由題意,由外到內依次各正方形的邊長分別為,則,,……,,于是數(shù)列是以4為首項,為公比的等比數(shù)列,則.由題意可得:,即……,于是.,故解得或.故答案為:或14、【解析】根據(jù)已知設直線方程為與C聯(lián)立,結合|BF|=2|AF|,利用韋達定理計算可得點A,B的坐標,進而求出向量的坐標,進而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標分別為,則則.故答案為:15、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點到直線的最小值.【詳解】設與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.16、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調查,利用樣本估計總體的思想,則應抽取成績不少于60分的學生人數(shù)為人故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)是1和的等差中項得到,再利用正弦定理結合商數(shù)關系,兩角和與差的三角函數(shù)化簡得到求解;(2)由和求得b,c的關系,再結合余弦定理求解即可.【詳解】(1)由已知得,在中,由正弦定理得,化簡得,因為,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【點睛】方法點睛:在解有關三角形的題目時,要有意識地考慮用哪個定理更適合,或是兩個定理都要用,要抓住能夠利用某個定理的信息,一般地,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到18、(1)單調遞減區(qū)間為,單調遞增區(qū)間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數(shù)大于零求增區(qū)間,令導數(shù)小于零求減區(qū)間;(2)求導數(shù),分、、a>2討論函數(shù)f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區(qū)間為,單調遞增區(qū)間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用19、或【解析】直線截圓得的弦長為,結合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結果.【詳解】設直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結合韋達定理求解;二是利用半弦長,弦心距,圓半徑構成直角三角形,利用勾股定理求解.20、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當直線的斜率不存在時,因為,所以直線的方程為,經驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標為,故動點的軌跡方程為21、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉化為求的最小值,即求.(2)判斷點B在拋物線的內部,過B作垂直準線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論