浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省杭州市西湖高中2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,已知點(diǎn),,,,直線AP,BP相交于點(diǎn)P,且它們斜率之積是.當(dāng)時(shí),的最小值為()A. B.C. D.2.在平面內(nèi),A,B是兩個(gè)定點(diǎn),C是動(dòng)點(diǎn),若,則點(diǎn)C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線3.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.4.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)焦點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓的方程為A. B.C. D.5.已知數(shù)列的通項(xiàng)公式為,則()A.12 B.14C.16 D.186.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.7.若“”是“”的充分不必要條件,則實(shí)數(shù)a的取值范圍為A. B.或C. D.8.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.9.?dāng)?shù)列滿足,,則()A. B.C. D.210.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.11.在棱長為4的正方體中,為的中點(diǎn),點(diǎn)P在正方體各棱及表面上運(yùn)動(dòng)且滿足,則點(diǎn)P軌跡圍成的圖形的面積為()A. B.C. D.12.設(shè),則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知5件產(chǎn)品中有2件次品、3件合格品,從這5件產(chǎn)品中任取2件,求2件都是合格品的概率_______.14.已知拋物線的準(zhǔn)線方程為,則________15.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)P到該拋物線焦點(diǎn)的距離為5,則點(diǎn)P的縱坐標(biāo)為_______16.已知圓關(guān)于直線對(duì)稱,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點(diǎn)的直線l與圓C相切,求直線l的方程.18.(12分)已知點(diǎn)P到點(diǎn)的距離比它到直線的距離小1.(1)求點(diǎn)P的軌跡方程;(2)點(diǎn)M,N在點(diǎn)P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),求面積的最小值.19.(12分)已知拋物線C的焦點(diǎn)為,N為拋物線上一點(diǎn),且(1)求拋物線C的方程;(2)過點(diǎn)F且斜率為k的直線l與C交于A,B兩點(diǎn),,求直線l的方程20.(12分)解答下列兩個(gè)小題:(1)雙曲線:離心率為,且點(diǎn)在雙曲線上,求的方程;(2)雙曲線實(shí)軸長為2,且雙曲線與橢圓的焦點(diǎn)相同,求雙曲線的標(biāo)準(zhǔn)方程21.(12分)如圖,C是以為直徑的圓上異于的點(diǎn),平面平面分別是的中點(diǎn).(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.22.(10分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(diǎn)(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)出點(diǎn)坐標(biāo),求得、所在直線的斜率,由斜率之積是列式整理即可得到點(diǎn)的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點(diǎn)坐標(biāo)為,則直線的斜率;直線的斜率由已知有,化簡得點(diǎn)的軌跡方程為又,所以點(diǎn)的軌跡方程為,即點(diǎn)的軌跡為以、為頂點(diǎn)的雙曲線的左支(除點(diǎn)),因?yàn)?,設(shè),由雙曲線的定義可知,所以,當(dāng)且僅當(dāng)、、三點(diǎn)共線時(shí)取得最小值,因?yàn)?,所以,所以,即的最小值為;故選:A2、A【解析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積定義求解其軌跡方程即可.【詳解】設(shè),以AB中點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點(diǎn)C的軌跡是以AB中點(diǎn)為圓心,為半徑的圓.故選:A.【點(diǎn)睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運(yùn)算,軌跡方程的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.3、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B4、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì);雙曲線的幾何性質(zhì).5、D【解析】利用給定的通項(xiàng)公式直接計(jì)算即得.【詳解】因數(shù)列的通項(xiàng)公式為,則有,所以.故選:D6、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標(biāo)和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.7、D【解析】“”是“”的充分不必要條件,結(jié)合集合的包含關(guān)系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點(diǎn)睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時(shí),可把充分條件、必要條件或充要條件轉(zhuǎn)化為集合間的關(guān)系,由此得到不等式(組)后再求范圍.解題時(shí)要注意,在利用兩個(gè)集合之間的關(guān)系求解參數(shù)的取值范圍時(shí),不等式是否能夠取等號(hào)決定端點(diǎn)值的取舍,處理不當(dāng)容易出現(xiàn)漏解或增解的現(xiàn)象.8、C【解析】先由cosA的值求出,進(jìn)而求出,用正弦定理求出b的值.【詳解】因?yàn)閏osA=,所以,所以由正弦定理:,得:.故選:C9、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔10、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C11、A【解析】構(gòu)造輔助線,找到點(diǎn)P軌跡圍成的圖形為長方形,從而求出面積.【詳解】取的中點(diǎn)E,的中點(diǎn)F,連接BE,EF,AF,則由于為的中點(diǎn),可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因?yàn)锽EEF=E,所以CN⊥平面ABEF,所以點(diǎn)P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A12、B【解析】,,所以是必要不充分條件,故選B.考點(diǎn):1.指、對(duì)數(shù)函數(shù)的性質(zhì);2.充分條件與必要條件.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】列舉總的基本事件及滿足題目要求的基本事件,然后用古典概型的概率公式求解即可.【詳解】設(shè)5件產(chǎn)品中的次品為,合格品為,則從這5件產(chǎn)品中任取2件,有共10個(gè)基本事件,其中2件都是合格品的有共3個(gè)基本事件,故2件都是合格品的概率為故答案為:.14、【解析】由準(zhǔn)線方程的表達(dá)式構(gòu)建方程,求得答案.【詳解】因?yàn)闇?zhǔn)線方程為,所以故答案為:4【點(diǎn)睛】本題考查拋物線中準(zhǔn)線的方程表示,屬于基礎(chǔ)題.15、4【解析】根據(jù)拋物線的定義,列出方程,即可得答案.【詳解】由題意:拋物線的準(zhǔn)線為,設(shè)點(diǎn)P的縱坐標(biāo)為,由拋物線定義可得,解得,所以點(diǎn)P的縱坐標(biāo)為4.故答案為:416、1【解析】根據(jù)題意,圓心在直線上,進(jìn)而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當(dāng)直線l的斜率不存在時(shí)則方程為,當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,利用圓心到直線的距離等于半徑計(jì)算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標(biāo)準(zhǔn)方程,得,圓心為,半徑.圓C的圓心為,半徑,因?yàn)椋詧AC與圓M相交,【小問2詳解】①當(dāng)直線l的斜率不存在時(shí),直線l的方程為到圓心C距離為2,滿足題意;②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1);(2).【解析】(1)根據(jù)給定條件可得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點(diǎn)M,N的坐標(biāo),再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計(jì)算作答.【小問1詳解】因點(diǎn)P到點(diǎn)的距離比它到直線的距離小1,顯然點(diǎn)P與F在直線l同側(cè),于是得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,則點(diǎn)P的軌跡是以F為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以點(diǎn)P的軌跡方程是.【小問2詳解】由(1)設(shè)點(diǎn),,且,因,則,解得,S,當(dāng)且僅當(dāng),即時(shí)取“=”,所以面積的最小值為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動(dòng)點(diǎn)的橫(縱)坐標(biāo)為變量,建立函數(shù)關(guān)系求解作答.19、(1)(2)或【解析】(1)拋物線的方程為,利用拋物線的定義求出點(diǎn)N,代入拋物線方程即可求解.(2)設(shè)直線的方程為,將直線與拋物線方程聯(lián)立,利用韋達(dá)定理以及焦半徑公式可得或,即求.【小問1詳解】拋物線的方程為,設(shè),依題意,由拋物線定義,即.所以,又由,得,解得(舍去),所以拋物線的方程為.【小問2詳解】由(1)得,設(shè)直線的方程為,,,由,得.因?yàn)?,故所?由題設(shè)知,解得或,因此直線方程為或.20、(1);(2).【解析】(1)由可得,再將點(diǎn)代入方程,聯(lián)立解出答案,可得答案.(2)先求出橢圓的焦點(diǎn),則雙曲線的焦點(diǎn)在軸上,由條件可得,且,從而得出答案.詳解】(1)由,得,即,又,即,雙曲線的方程即為,點(diǎn)坐標(biāo)代入得,解得所以,雙曲線的方程為(2)橢圓的焦點(diǎn)為,設(shè)雙曲線的方程為,所以,且,所以,所以,雙曲線的方程為21、(1)證明見解析(2)【解析】(1)由分別是的中點(diǎn),得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的一個(gè)法向量,結(jié)合向量的夾角公式,即可求解.【小問1詳解】證明:在,因?yàn)榉謩e是的中點(diǎn),所以,又因?yàn)槭菆A的直徑,所以,又由平面平面,平面平面,且平面,所以面,因?yàn)?,所以?【小問2詳解】解:由(1)知面,所以直線與平面所成角為,由題意知,以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面的直線為z軸,建立空間直角坐標(biāo)系,如圖所示,可得,則,,設(shè)面的法向量為,則,取,可得,所以,設(shè)面的法向量為,則,取,可得,所以,則,所以銳二面角的余弦值為.22、(1)證明見解析.(2)2.【解析】(1)取的中點(diǎn),連接,.運(yùn)用面面平行的判定和性質(zhì)可得證;(2)過點(diǎn)作,垂足為,連接,,設(shè)點(diǎn)到平面的距離為,根據(jù)棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論