




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江金華市浙師大附中2023-2024學年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則2.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]3.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.44.數(shù)列,,,,…的一個通項公式為()A. B.C. D.5.如圖,過拋物線的焦點的直線交拋物線于點,,交其準線于點,準線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.7.已知中心在坐標原點,焦點在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.8.如圖,一個圓錐形的空杯子上面放著一個半徑為4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛滿杯子,則杯子的高()A.9cm B.6cmC.3cm D.4.5cm9.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.2710.袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):由此可以估計,恰好第三次就停止的概率為()A. B.C. D.11.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構成數(shù)列,則=()A.130 B.132C.140 D.14412.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結果為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設數(shù)列滿足,則an=________14.若圓的一條直徑的端點是、,則此圓的方程是_______15.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___16.直線l:y=-x+m與曲線有兩個公共點,則實數(shù)m的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓過點,且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點,求的面積的最大值.18.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)記,其中表示不超過最大整數(shù),如,.(i)求、、;(ii)求數(shù)列的前項的和.19.(12分)某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.20.(12分)某企業(yè)為響應“安全生產(chǎn)”號召,將全部生產(chǎn)設備按設備安全系數(shù)分為A,兩個等級,其中等設備安全系數(shù)低于A等設備.企業(yè)定時對生產(chǎn)設備進行檢修,并將部分等設備更新成A等設備.據(jù)統(tǒng)計,2020年底該企業(yè)A等設備量已占全體設備總量的30%.從2021年開始,企業(yè)決定加大更新力度,預計今后每年將16%的等設備更新成A等設備,與此同時,4%的A等設備由于設備老化將降級成等設備.(1)在這種更新制度下,在將來的某一年該企業(yè)的A等設備占全體設備的比例能否超過80%?請說明理由;(2)至少在哪一年底,該企業(yè)的A等設備占全體設備的比例超過60%.(參考數(shù)據(jù):,,)21.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由22.(10分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)線線,線面,面面位置關系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.2、B【解析】結合導數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當時,,當時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.3、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B4、B【解析】根據(jù)給定數(shù)列,結合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B5、B【解析】根據(jù)拋物線定義,結合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準線,垂足為,過作垂直于準線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.6、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎題.7、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.8、A【解析】根據(jù)圓錐和球的體積公式以及半球的體積等于圓錐的體積,即可列式解出【詳解】由題意可得,,解得.故選:A9、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質(zhì)即可求出結果.【詳解】因為為等比數(shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C10、A【解析】利用古典概型的概率公式求解.【詳解】因為隨機模擬產(chǎn)生了以下18組隨機數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個,所以由此可以估計,恰好第三次就停止的概率為,故選:A11、A【解析】分析數(shù)列的特點,可知其是等差數(shù)列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構成首項為10,公差為12的等差數(shù)列,所以,故,故選:A12、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當時,;當時,②①②得,當也成立.即故答案為:14、【解析】先設圓上任意一點的坐標,然后利用直徑對應的圓周角為直角,再利用向量垂直建立方程即可【詳解】設圓上任意一點的坐標為可得:,則有:,即解得:故答案為:15、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:16、【解析】曲線表示圓的右半圓,結合的幾何意義,得出實數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當直線與相切時,,即,由表示直線的截距,因為直線l與曲線有兩個公共點,由圖可知,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2.【解析】(1)由離心率,得到,再由點在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關系和弦長公式,以及點到直線的距離公式,求得,結合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過點,可得,將代入,可得,故橢圓方程為.(2)設的方程為,設點,聯(lián)立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點P到直線的距離,所以,當且僅當,即時,的面積取得最大值為2.【點睛】本題主要考查橢圓的標準方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯(lián)立直線方程與橢圓方程,應用一元二次方程根與系數(shù)的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.18、(1);(2)(i),,;(ii).【解析】(1)推導出數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,即可求得數(shù)列的通項公式;(2)(i)利用對數(shù)函數(shù)的單調(diào)性結合題中定義可求得、、的值;(ii)分別解不等式、、,結合題中定義可求得數(shù)列的前項的和.【小問1詳解】解:因為,,則,可得,,可得,以此類推可知,對任意的,.由,變形為,是一個以為公差的等差數(shù)列,且首項為,所以,,因此,.【小問2詳解】解:(i),則,,則,故,,則,故;(ii),當時,即當時,,當時,即當時,,當時,即當時,,因此,數(shù)列的前項的和為.19、(1);(2).【解析】(1)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得結果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學成績在、內(nèi)的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.20、(1)A等設備量不可能超過生產(chǎn)設備總量的80%,理由見解析;(2)在2025年底實現(xiàn)A等設備量超過生產(chǎn)設備總量的60%.【解析】(1)根據(jù)題意表示出2020年開始,經(jīng)過年后A等設備量占總設備量的百分比為,求出,根據(jù)的范圍進行判斷;(2)令>即可求解.【小問1詳解】記該企業(yè)全部生產(chǎn)設備總量為“1”,2020年開始,經(jīng)過年后A等設備量占總設備量的百分比為,則經(jīng)過1年即2021年底該企業(yè)A等設備量,,可得,又所以數(shù)列是以為首項,公比為的等比數(shù)列,可得,所以,顯然有,所以A等設備量不可能超過生產(chǎn)設備總量的80%.【小問2詳解】由,得.因為單調(diào)遞減,又,,所以在2025年底實現(xiàn)A等設備量超過生產(chǎn)設備總量的60%.21、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標系,先求得平面SCD的一個法向量,再由求解;(2)假設存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標系,,所以,設平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設存在點M,使得平面MEF平面SCD,,,設平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.22、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標原點,分別為x,y,z軸,建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度抵頂房屋租賃合同續(xù)簽及抵頂條款協(xié)議
- 2025年度環(huán)保監(jiān)測股權收購協(xié)議書
- 2025年度房地產(chǎn)項目股權變更全面控股權轉(zhuǎn)讓合同
- 2025年度交通事故車輛損失賠償和解協(xié)議
- 2025年度專業(yè)烹飪教學廚師雇傭合同樣本
- 2025年度新材料產(chǎn)業(yè)基金投資合作協(xié)議
- 墻紙施工合同范本
- 2025年度房地產(chǎn)交易免責協(xié)議書
- 2025年度交通事故人身傷害賠償執(zhí)行合同
- 科技創(chuàng)新在中國商業(yè)領域的戰(zhàn)略布局
- 新公務員法培訓課件
- 2023年基層醫(yī)療機構院感控考試試題及答案
- 領導干部的國學修養(yǎng)講義
- 05-第三章-環(huán)境污染物的生物轉(zhuǎn)運和生物轉(zhuǎn)化-生物轉(zhuǎn)化幻燈片
- 公司精益改善項目推進管理制度及激勵方案
- 工科高等數(shù)學(下)知到章節(jié)答案智慧樹2023年上海海洋大學
- oppor11t刷全網(wǎng)通改全教程
- 兒童羽毛球教程
- 福建某機場二次雷達站基建工程施工組織設計
- 內(nèi)部控制-倉儲與存貨循環(huán)調(diào)查問卷
- 流程成熟度模型(PEMM)
評論
0/150
提交評論