![云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view/c2482d32a862a5c06d7e817f92cc2ec4/c2482d32a862a5c06d7e817f92cc2ec41.gif)
![云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view/c2482d32a862a5c06d7e817f92cc2ec4/c2482d32a862a5c06d7e817f92cc2ec42.gif)
![云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view/c2482d32a862a5c06d7e817f92cc2ec4/c2482d32a862a5c06d7e817f92cc2ec43.gif)
![云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view/c2482d32a862a5c06d7e817f92cc2ec4/c2482d32a862a5c06d7e817f92cc2ec44.gif)
![云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view/c2482d32a862a5c06d7e817f92cc2ec4/c2482d32a862a5c06d7e817f92cc2ec45.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省建水縣四校2023年高二上數(shù)學(xué)期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線C:的右焦點(diǎn)為F,過點(diǎn)F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.22.已知圓:,圓:,則兩圓的位置關(guān)系為()A.外離 B.外切C.相交 D.內(nèi)切3.已知等比數(shù)列的公比為正數(shù),且,,則()A.4 B.2C.1 D.4.過點(diǎn)P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個(gè)公共點(diǎn),這樣的直線l共有A.1條 B.2條C.3條 D.4條5.年底以來,我國(guó)多次在重要場(chǎng)合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負(fù)抵消,實(shí)現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個(gè)碳原子和兩個(gè)氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種6.橢圓與(0<k<9)的()A.長(zhǎng)軸的長(zhǎng)相等B.短軸的長(zhǎng)相等C.離心率相等D.焦距相等7.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-18.若橢圓的一個(gè)焦點(diǎn)為,則的值為()A.5 B.3C.4 D.29.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過點(diǎn)P,且,則C的離心率為()A. B.C. D.10.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成遞增的等差數(shù)列,這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.16C.18 D.2011.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離12.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:,圓:,則圓與圓的位置關(guān)系是______14.已知命題:方程表示焦點(diǎn)在軸上的橢圓;命題:方程表示雙曲線.若為真,則實(shí)數(shù)的取值范圍為______.15.已知數(shù)列滿足,且.則數(shù)列的通項(xiàng)公式為_______16.如圖是用斜二測(cè)畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,點(diǎn)在橢圓上.過點(diǎn)的直線l交橢圓于A,B兩點(diǎn).(1)求該橢圓的方程;(2)若點(diǎn)P為直線上的動(dòng)點(diǎn),記直線PA,PM,PB的斜率分別為,,.求證:,,成等差數(shù)列.18.(12分)已知數(shù)列的前n項(xiàng)和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),為數(shù)列的前n項(xiàng)和,①求;②若不等式對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)的取值范圍19.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(diǎn)(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點(diǎn)M,使得平面MEF平面SCD?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說明理由20.(12分)設(shè)關(guān)于x的不等式的解集為A,關(guān)于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實(shí)數(shù)m的取值范圍21.(12分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時(shí)間的專項(xiàng)調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時(shí)間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時(shí)間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時(shí)間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計(jì)該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù);(2)在樣本中,對(duì)平均每天體育鍛煉時(shí)間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再?gòu)倪@6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率22.(10分)已知點(diǎn)F是拋物線和橢圓的公共焦點(diǎn),是與的交點(diǎn),.(1)求橢圓的方程;(2)直線與拋物線相切于點(diǎn),與橢圓交于,,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求的最大值及相應(yīng)的.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標(biāo)原點(diǎn)),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.2、C【解析】求出兩圓的圓心和半徑,根據(jù)圓心距與半徑和與差的關(guān)系,判斷圓與圓的位置關(guān)系【詳解】圓:的圓心為,半徑,圓:,即,圓心,半徑,兩圓的圓心距,顯然,即,所以圓與圓相交.故選:C3、D【解析】設(shè)等比數(shù)列的公比為(),則由已知條件列方程組可求出【詳解】設(shè)等比數(shù)列的公比為(),由題意得,且,即,,因?yàn)?,所以,,故選:D4、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點(diǎn)P(2,1)在漸近線y=x上,又雙曲線的右頂點(diǎn)為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點(diǎn)睛】該題考查的是有關(guān)直線與雙曲線的公共點(diǎn)有一個(gè)的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.5、C【解析】分兩種情況討論:兩個(gè)氧原子相同、兩個(gè)氧原子不同,分別計(jì)算出兩種情況下二氧化碳分子的個(gè)數(shù),利用分類加法計(jì)數(shù)原理可得結(jié)果.【詳解】分以下兩種情況討論:若兩個(gè)氧原子相同,此時(shí)二氧化碳分子共有種;若兩個(gè)氧原子不同,此時(shí)二氧化碳分子共有種.由分類加法計(jì)數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.6、D【解析】根據(jù)橢圓方程求得兩個(gè)橢圓的,由此確定正確選項(xiàng).【詳解】橢圓與(0<k<9)的焦點(diǎn)分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D7、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項(xiàng),以1為公差的等差數(shù)列,∴,即,∴當(dāng)時(shí),,當(dāng)時(shí),也適合上式,所以故選:A.8、B【解析】由題意判斷橢圓焦點(diǎn)在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點(diǎn)在軸上,則,從而,解得:.故選:B.9、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.10、B【解析】由題可知這是一個(gè)等差數(shù)列,前項(xiàng)和,,列式求基本量即可.【詳解】設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:B11、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.12、D【解析】根據(jù)集合交集的運(yùn)算法則計(jì)算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】把兩個(gè)圓的方程化為標(biāo)準(zhǔn)方程,分別找出兩圓的圓心坐標(biāo)和半徑,利用兩點(diǎn)間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.14、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.15、【解析】倒數(shù)型求數(shù)列通項(xiàng)公式,第一步求倒數(shù),第二步構(gòu)造數(shù)列,求通項(xiàng).【詳解】因?yàn)?,所以,所以?shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,所以故答案為:.16、【解析】根據(jù)直觀圖和平面圖的關(guān)系可求出,進(jìn)而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)焦點(diǎn)坐標(biāo)及橢圓上的點(diǎn),利用橢圓的定義求出a,再由關(guān)系求b,即可得解;(2)分直線斜率存在與不存在兩種情況討論,利用斜率公式計(jì)算出,根據(jù)等差中項(xiàng)計(jì)算,即可證明成等差數(shù)列.【小問1詳解】∵橢圓的焦距,橢圓的兩焦點(diǎn)坐標(biāo)分別為,又點(diǎn)在橢圓上,,即.該橢圓方程為.【小問2詳解】設(shè).當(dāng)直線l的斜率為0時(shí),其方程為,代入,可得.不妨取,則,成等差數(shù)列.當(dāng)直線l的斜率不為0時(shí),設(shè)其方程為,由,消去x得.即,成等差數(shù)列,綜上可得,,成等差數(shù)列.18、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項(xiàng)公式,從而得到的通項(xiàng)公式;(2)①由(1)可得,再利用錯(cuò)位相減法求和即可;②利用作差法證明的單調(diào)性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當(dāng)時(shí),可得,解得,當(dāng)時(shí),,又,兩式相減得,所以,所以,即,則數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調(diào)遞增,所以,因?yàn)椴坏仁綄?duì)任意的正整數(shù)n恒成立,所以,即,解得或,即19、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點(diǎn)M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個(gè)法向量,再由求解;(2)假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,再求得平面MEF的一個(gè)法向量,然后由求解.小問1詳解】解:分別取AB,BC中點(diǎn)M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個(gè)法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個(gè)法向量,,令,則,平面MEF平面SCD,,,存在點(diǎn),此時(shí)M與S重合.20、(1),(2)【解析】(1)直接解不等式即可,(2)由題意可得,從而可得解不等式組可求得答案【小問1詳解】由,得,故由,得,故【小問2詳解】依題意得:,∴解得∴m的取值范圍為21、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機(jī)抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育培訓(xùn)合作委托居間合同
- 品牌營(yíng)銷推廣策略指南
- 技術(shù)產(chǎn)品銷售合同
- 華為勞動(dòng)合同管理制度
- 遺傳基因技術(shù)服務(wù)合同
- 外貿(mào)實(shí)務(wù)操作作業(yè)指導(dǎo)書
- 倉(cāng)儲(chǔ)配送合同
- 智能工廠建設(shè)與運(yùn)營(yíng)作業(yè)指導(dǎo)書
- 2025年來賓貨運(yùn)從業(yè)資格證模擬考試題庫(kù)
- 2025年陜西貨運(yùn)從業(yè)資格考試模擬考試題庫(kù)及答案大全
- 小學(xué)校本課程教材《趣味數(shù)學(xué)》
- 干細(xì)胞療法推廣方案
- (2024年)電工安全培訓(xùn)(新編)課件
- mil-std-1916抽樣標(biāo)準(zhǔn)(中文版)
- 城鄉(xiāng)環(huán)衛(wèi)一體化內(nèi)部管理制度
- 廣匯煤炭清潔煉化有限責(zé)任公司1000萬(wàn)噸年煤炭分級(jí)提質(zhì)綜合利用項(xiàng)目變更環(huán)境影響報(bào)告書
- 小學(xué)數(shù)學(xué)六年級(jí)解方程練習(xí)300題及答案
- 大數(shù)據(jù)在化工行業(yè)中的應(yīng)用與創(chuàng)新
- 光伏十林業(yè)可行性報(bào)告
- 小學(xué)綜合實(shí)踐《我做環(huán)保宣傳員 保護(hù)環(huán)境人人有責(zé)》
- 鋼煤斗內(nèi)襯不銹鋼板施工工法
評(píng)論
0/150
提交評(píng)論