版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
西藏日喀則市南木林中學(xué)2024屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線,,若,則實(shí)數(shù)的值是()A.0 B.2或-1C.0或-3 D.-32.如圖,、分別為橢圓的左、右焦點(diǎn),為橢圓上的點(diǎn),是線段上靠近的三等分點(diǎn),為正三角形,則橢圓的離心率為()A. B.C. D.3.若拋物線焦點(diǎn)坐標(biāo)為,則的值為A. B.C.8 D.44.設(shè)等差數(shù)列,前n項(xiàng)和分別是,若,則()A.1 B.C. D.5.直線的傾斜角為A. B.C. D.6.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是()A. B.C. D.7.已知雙曲線C:-=1(a>b>0)的左焦點(diǎn)為F1,若過(guò)原點(diǎn)傾斜角為的直線與雙曲線C左右兩支交于M、N兩點(diǎn),且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.8.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.9.已知橢圓的上下頂點(diǎn)分別為,一束光線從橢圓左焦點(diǎn)射出,經(jīng)過(guò)反射后與橢圓交于點(diǎn),則直線的斜率為()A. B.C. D.10.已知雙曲線的右焦點(diǎn)為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為().A. B.C. D.11.某考點(diǎn)配備的信號(hào)檢測(cè)設(shè)備的監(jiān)測(cè)范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機(jī)以每分鐘50米的速度從設(shè)備正東方向米的處出發(fā),沿處西北方向走向位于設(shè)備正北方向的處,則這名工作人員被持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng)為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘12.已知向量分別是直線的方向向量,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的各項(xiàng)均為正數(shù),且,則__________.14.在平面直角坐標(biāo)系中,直線與的交點(diǎn)為,以為圓心作圓,圓上的點(diǎn)到軸的最小距離為(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)點(diǎn)作圓的切線,求切線的方程15.一個(gè)質(zhì)地均勻的正四面體,其四個(gè)面涂有不同的顏色,拋擲這個(gè)正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨(dú)立事件;③F與G是對(duì)立事件;④F與G是獨(dú)立事件.其中正確判斷的序號(hào)是______(請(qǐng)寫(xiě)出所有正確判斷的序號(hào))16.若函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過(guò)點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.18.(12分)如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:平面.19.(12分)已知橢圓的左、右兩個(gè)焦點(diǎn),,離心率,短軸長(zhǎng)為21求橢圓的方程;2如圖,點(diǎn)A為橢圓上一動(dòng)點(diǎn)非長(zhǎng)軸端點(diǎn),的延長(zhǎng)線與橢圓交于B點(diǎn),AO的延長(zhǎng)線與橢圓交于C點(diǎn),求面積的最大值20.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點(diǎn),求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.21.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點(diǎn).(1)求證:平面PBC;(2)在線段PD上是否存在一點(diǎn)M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說(shuō)明理由.22.(10分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,結(jié)合兩直線一般式有列方程求解即可.【詳解】由知:,解得:或故選:C.2、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運(yùn)用余弦定理得到、的關(guān)系,進(jìn)而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因?yàn)檎切?,所以,在中,由余弦定理得,則,,故選:D【點(diǎn)睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運(yùn)算求解能力,屬于中等題.3、A【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而根據(jù)拋物線的焦點(diǎn)坐標(biāo),可得的值.【詳解】拋物線的標(biāo)準(zhǔn)方程為,因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以,所以,故選A.【點(diǎn)睛】該題考查的是有關(guān)利用拋物線的焦點(diǎn)坐標(biāo)求拋物線的方程的問(wèn)題,涉及到的知識(shí)點(diǎn)有拋物線的簡(jiǎn)單幾何性質(zhì),屬于簡(jiǎn)單題目.4、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因?yàn)榈炔顢?shù)列,的前n項(xiàng)和分別是,所以,故選:B5、B【解析】分析出直線與軸垂直,據(jù)此可得出該直線的傾斜角.【詳解】由題意可知,直線與軸垂直,該直線的傾斜角為.故選:B.【點(diǎn)睛】本題考查直線的傾斜角,關(guān)鍵是掌握直線傾斜角的定義,屬于基礎(chǔ)題6、C【解析】根據(jù)空間里面點(diǎn)關(guān)于面對(duì)稱的性質(zhì)即可求解.【詳解】在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是.故選:C.7、C【解析】根據(jù)雙曲線和直線的對(duì)稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進(jìn)行求解即可.【詳解】設(shè)雙曲線的右焦點(diǎn)為F2,過(guò)原點(diǎn)傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對(duì)稱性可知:M、N兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因?yàn)?,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.8、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.9、B【解析】根據(jù)給定條件借助橢圓的光學(xué)性質(zhì)求出直線AD的方程,進(jìn)而求出點(diǎn)D的坐標(biāo)計(jì)算作答.【詳解】依題意,橢圓的上頂點(diǎn),下頂點(diǎn),左焦點(diǎn),右焦點(diǎn),由橢圓的光學(xué)性質(zhì)知,反射光線AD必過(guò)右焦點(diǎn),于是得直線AD的方程為:,由得點(diǎn),則有,所以直線的斜率為.故選:B10、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由,可知為的三等分點(diǎn),用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由到漸近線的距離為,所以,又,所以,因?yàn)?,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.11、C【解析】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,求得直線和圓的方程,利用點(diǎn)到直線的距離公式和圓的弦長(zhǎng)公式,求得的長(zhǎng),進(jìn)而求得持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng).【詳解】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,如圖所示,則,,可得,圓記從處開(kāi)始被監(jiān)測(cè),到處監(jiān)測(cè)結(jié)束,因?yàn)榈降木嚯x為米,所以米,故監(jiān)測(cè)時(shí)長(zhǎng)為分鐘故選:C.12、C【解析】由題意,得,由此可求出答案【詳解】解:∵,且分別是直線的方向向量,∴,∴,∴,故選:C【點(diǎn)睛】本題主要考查向量共線的坐標(biāo)表示,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對(duì)數(shù)的性質(zhì)可得結(jié)果【詳解】解:因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),且,所以,所以故答案為:1014、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點(diǎn)的坐標(biāo),設(shè)圓的半徑為,圓上的點(diǎn)到軸的最小距離為1求得的值,由此可得出圓的標(biāo)準(zhǔn)方程;(Ⅱ)對(duì)切線的斜率是否存在進(jìn)行分類討論,當(dāng)切線的斜率不存在時(shí),可得切線方程為,驗(yàn)證即可;當(dāng)切線的斜率存在時(shí),可設(shè)所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點(diǎn)設(shè)圓的半徑為,由于圓上的點(diǎn)到軸的最小距離為,則,所以,故圓的標(biāo)準(zhǔn)方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設(shè)切線的方程為,即,圓的圓心坐標(biāo)為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程的求解,同時(shí)也考查了過(guò)圓外一點(diǎn)的圓的切線方程的求解,考查計(jì)算能力,屬于中等題.15、②③【解析】由對(duì)立和互斥事件的定義判斷①③;由獨(dú)立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對(duì)立事件;,則E與F是獨(dú)立事件;,,則F與G不是獨(dú)立事件故答案為:②③16、【解析】求解定義域,由導(dǎo)函數(shù)小于0得到遞減區(qū)間,進(jìn)而得到不等式組,求出實(shí)數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調(diào)遞減,∴,解得:.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問(wèn)1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因?yàn)镸是線段PQ的中點(diǎn),所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因?yàn)椋?,所?18、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點(diǎn),連結(jié)和,通過(guò)線線平行得到面面,進(jìn)而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點(diǎn),連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點(diǎn)睛】方法點(diǎn)睛:線面平行常見(jiàn)的證明方法:(1)通過(guò)構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過(guò)構(gòu)造平行四邊形得到線線平行;(3)通過(guò)線面平行得到面面平行,再得線面平行.19、(1)橢圓的標(biāo)準(zhǔn)方程為(2)面積的最大值為【解析】(1)由題意得,再由,標(biāo)準(zhǔn)方程為;(2)①當(dāng)?shù)男甭什淮嬖跁r(shí),不妨?。虎诋?dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立方程組,又直線的距離點(diǎn)到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時(shí),不妨取,故;②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組,化簡(jiǎn)得,設(shè)點(diǎn)到直線的距離因?yàn)槭蔷€段的中點(diǎn),所以點(diǎn)到直線的距離為,∴綜上,面積的最大值為.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離、弦長(zhǎng)公式和三角形面積公式等知識(shí),涉及函數(shù)與方程思想、數(shù)形結(jié)合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運(yùn)算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標(biāo)準(zhǔn)方程為;(2)利用分類與整合思想分當(dāng)?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時(shí),由舍而不求法求得,再求得點(diǎn)到直線的距離為面積的最大值為.20、(1)證明見(jiàn)解析(2)【解析】(1)通過(guò)構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過(guò)兩個(gè)面的法向量夾角的余弦值求出面面夾角的余弦值【小問(wèn)1詳解】證明:設(shè)為的中點(diǎn),連接,,因?yàn)?,分別為,的中點(diǎn).所以且,又,為的中點(diǎn),所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問(wèn)2詳解】取的中點(diǎn),連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點(diǎn),∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,,,,.設(shè)為平面的一個(gè)法向量,則有即取可取,設(shè)為平面的一個(gè)法向量,則有即可取,所以,設(shè)平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.21、(1)證明見(jiàn)解析(2)存在,且【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),利用直線與平面所成角的正弦值列方程,化簡(jiǎn)求得.【小問(wèn)1詳解】設(shè)是的中點(diǎn),連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,,設(shè)平面的法向量為,則,故可設(shè).,且平面,所以平面.【小問(wèn)2詳解】,設(shè),則,,,設(shè)直線與平面所成角為,則,,兩邊平方并化簡(jiǎn)得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.22、(1)在R上單調(diào)遞增,無(wú)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育教學(xué)能力課程設(shè)計(jì)
- it運(yùn)維項(xiàng)目維護(hù)服務(wù)實(shí)施方案
- 保安表?yè)P(yáng)信5篇
- 2024定制型地下停車位銷售協(xié)議版
- 屋面 BIPV(光伏)漏水整改施工方案
- 籃球興趣班方案
- 揚(yáng)塵治理精細(xì)化管理方案
- 浙江省 守合同重信用 基本知識(shí)
- 隱名買(mǎi)房合同模板
- N-2-Diethylamino-ethyl-2-iodobenzamide-生命科學(xué)試劑-MCE
- 2024年消防月全員消防安全知識(shí)專題培訓(xùn)-附20起典型火災(zāi)案例
- GB/T 44592-2024紅樹(shù)林生態(tài)保護(hù)修復(fù)技術(shù)規(guī)程
- GB/T 44413-2024城市軌道交通分類
- 門(mén)窗加工生產(chǎn)項(xiàng)目智能制造方案
- 2024年甘肅慶陽(yáng)市林業(yè)和草原局招聘專職聘用制護(hù)林員57人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- (正式版)JBT 14449-2024 起重機(jī)械焊接工藝評(píng)定
- 正高級(jí)會(huì)計(jì)師答辯面試資料
- 華北電力大學(xué)(保定)
- 少先隊(duì)員代表大會(huì)提案登記表
- 9天干地支與十神的對(duì)照表
- 古代官職變動(dòng)用詞(完整版).ppt
評(píng)論
0/150
提交評(píng)論