版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,O為坐標原點,點,其中滿足,D為直線AB與軸的交點,C為線段AB上一點,其縱坐標為.(1)求的值;(2)當(dāng)為何值時,和面積的相等;(3)若點C坐標為(-2,1),點M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)3.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).4.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請直接寫出∠M與∠BED之間的數(shù)量關(guān)系5.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點M、N,點P在直線I上運動,當(dāng)點P在線段MN上運動時(不與點M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說明理由;(2)在(1)的條件下,如果點P在線段MN或NM的延長線上運動時.請直接寫出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點P是AB、CD之間的一點(點P在點A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線交于點Q.若∠APC=116°,請結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).6.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當(dāng)點在、(不與、重合)兩點之間運動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.7.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫出計算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(2)試一試,仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫成冪的形式等于多少.(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧8.小學(xué)的時候我們已經(jīng)學(xué)過分數(shù)的加減法法則:“同分母分數(shù)相加減,分母不變,分子相加減;異分母分數(shù)相加減,先通分,轉(zhuǎn)化為同分母分數(shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計算:.9.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個分子為1的正的真分數(shù)之差,即;②把拆成兩個分子為1的正的真分數(shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.10.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結(jié)果為1.(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.11.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:12.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.13.已知、兩點的坐標分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點的坐標為______,點D的坐標為______;(2)如圖1,軸于,上有一動點,連接、,求最小時點位置及其坐標,并說明理由;(3)如圖2,為軸上一點,若平分,且于,.求與之間的數(shù)量關(guān)系.14.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點、,且,直接寫出的值.15.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當(dāng)?shù)拿娣e是的面積的3倍時,求點的坐標;(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說明理由.16.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風(fēng)扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.17.如圖1,在直角坐標系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標為且,求的值;(3)如圖2,點坐標是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內(nèi)部(不包含三角形的邊),求的取值范圍.18.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內(nèi)是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.19.先閱讀下面材料,再完成任務(wù):有些關(guān)于方程組的問題,欲求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù),滿足,……①,,……②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得,這樣的解題思想就是通常所說的“整體思想”解決問題:(1)已知二元一次方程組,則______,______;(2)某班級組織活動購買小獎品,買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元,則購買5支鉛筆、5塊橡皮、5本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么______.20.我國傳統(tǒng)數(shù)學(xué)名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.21.閱讀下面資料:小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個問題.(1)直接寫出S1(用含字母a的式子表示).請參考小明同學(xué)思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內(nèi)一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.22.學(xué)校計劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需120元;購買5個A獎品和4個B獎品共需210元.(1)求A,B兩種獎品的單價;(2)學(xué)校準備購買A,B兩種獎品共30個,且A獎品的數(shù)量不少于B獎品數(shù)量的.請設(shè)計出最省錢的購買方案,并說明理由.23.七年(1)(2)兩班各40人參加垃圾分類知識競賽,規(guī)則如圖.比賽中,所有同學(xué)均按要求一對一連線,無多連、少連.(1)分數(shù)5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯,其余成員中,滿分人數(shù)是未滿分人數(shù)的2倍;七年(2)班所有人都得分,最低分人數(shù)的2倍與其他未滿分人數(shù)之和等于滿分人數(shù).①問(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,問哪個班的總分高?24.對a,b定義一種新運算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實數(shù)).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關(guān)于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標系上的點A(x,y)落在坐標軸上,將線段OA沿x軸向右平移2個單位,得線段O′A′,坐標軸上有一點B滿足三角形BOA′的面積為9,請直接寫出點B的坐標.25.某數(shù)碼專營店銷售A,B兩種品牌智能手機,這兩種手機的進價和售價如表所示:AB進價(元/部)33003700售價(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機共34部,且銷售A種手機的利潤恰好是銷售B種手機利潤的2倍,求該店三月份售出A種手機和B種手機各多少部?(2)根據(jù)市場調(diào)研,該店四月份計劃購進這兩種手機共40部,要求購進B種手機數(shù)不低于A種手機數(shù)的,用于購買這兩種手機的資金低于140000元,請通過計算設(shè)計所有可能的進貨方案.26.小語爸爸開了一家茶葉專賣店,包裝設(shè)計專業(yè)畢業(yè)的小語為爸爸設(shè)計了一款紙質(zhì)長方體茶葉包包裝盒(紙片厚度不計).如圖,陰影部分是裁剪掉的部分,沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處長方形形狀的“接口”用來折疊后粘貼或封蓋.(1)若小語用長,寬的長方形紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?(2)小語爸爸的茶葉專賣店以每盒元購進一批茶葉,按進價增加作為售價,第一個月由于包裝粗糙,只售出不到一半但超過三分之一的量;第二個月采用了小語的包裝后,馬上售完了余下的茶葉,但每盒成本增加了元,售價仍不變,已知在整個買賣過程中共盈利元,求這批茶葉共進了多少盒?27.在平面直角坐標系中,點,,的坐標分別為,,,且,滿足方程為二元一次方程.(1)求,的坐標.(2)若點為軸正半軸上的一個動點.①如圖1,當(dāng)時,與的平分線交于點,求的度數(shù);②如圖2,連接,交軸于點.若成立.設(shè)動點的坐標為,求的取值范圍.28.閱讀理解:例1.解方程|x|=2,因為在數(shù)軸上到原點的距離為2的點對應(yīng)的數(shù)為±2,所以方程|x|=2的解為x=±2.例2.解不等式|x﹣1|>2,在數(shù)軸上找出|x﹣1|=2的解(如圖),因為在數(shù)軸上到1對應(yīng)的點的距離等于2的點對應(yīng)的數(shù)為﹣1或3,所以方程|x﹣1|=2的解為x=﹣1或x=3,因此不等式|x﹣1|>2的解集為x<﹣1或x>3.參考閱讀材料,解答下列問題:(1)方程|x﹣2|=3的解為;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)對于任意數(shù)x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范圍.29.定義:如果一個兩位數(shù)a的十位數(shù)字為m,個位數(shù)字為n,且、、,那么這個兩位數(shù)叫做“互異數(shù)”.將一個“互異數(shù)”的十位數(shù)字與個位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調(diào)個位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計算:________;________;(m、n分別為一個兩位數(shù)的十位數(shù)字與個位數(shù)字)(2)如果一個“互異數(shù)”b的十位數(shù)字是x,個位數(shù)字是y,且;另一個“互異數(shù)”c的十位數(shù)字是,個位數(shù)字是,且,請求出“互異數(shù)”b和c;(3)如果一個“互異數(shù)”d的十位數(shù)字是x,個位數(shù)字是,另一個“互異數(shù)”e的十位數(shù)字是,個位數(shù)字是3,且滿足,請直接寫出滿足條件的所有x的值________;(4)如果一個“互異數(shù)”f的十位數(shù)字是,個位數(shù)字是x,且滿足的互異數(shù)有且僅有3個,則t的取值范圍________.30.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面積為______;(2)如圖2,若AC⊥BC,點P線段OC上一點,連接BP,延長BP交AC于點Q,當(dāng)∠CPQ=∠CQP時,求證:BP平分∠ABC;(3)如圖3,若AC⊥BC,點E是點A與點B之間一動點,連接CE,CB始終平分∠ECF,當(dāng)點E在點A與點B之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1);(2)當(dāng)時,和面積的相等;(3)m的取值范圍是【分析】(1)利用非負數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點D的坐標為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時,如圖1中,②當(dāng)m≤-2時,如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點D的坐標為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點D的坐標為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時,△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時,如圖1中,過點C作CF⊥軸于點F,過點M作GE⊥軸于點E,過點C作CG⊥軸交GE于點G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時,如圖2中,過點C作GF⊥軸于點F,過點M作ME⊥軸于點E,過點M作MG⊥軸交GF于點G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點睛】本題考查了坐標與圖形的性質(zhì),三角形的面積,非負數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù),構(gòu)建方程解決問題,屬于中考壓軸題.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.3.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.4.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個角的角平分線相交于點,,,,,,;(3)由(2)結(jié)論可得,,,則.【點睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補的性質(zhì).5.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點P在線段MN或NM的延長線上運動兩種情況,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解;(3)過點P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點P在線段MN的延長線上運動時,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點P在線段NM的延長線上運動時,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點睛】此題考查了平行線的判定與性質(zhì),添加輔助線將兩條平行線相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.6.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當(dāng)點在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補,兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.7.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分別按公式進行計算即可;(2)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(3)結(jié)果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)椋瑒ta?=a×()n-1;(4)將第二問的規(guī)律代入計算,注意運算順序.【詳解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)a?=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.8.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個式子的結(jié)果;(2)①根據(jù)題目中的式子的特點和(1)中的結(jié)果,可以求得所求式子的值;②根據(jù)題目中的式子的特點和(1)中的結(jié)果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點,可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點睛】本題考查數(shù)字的變化類、有理數(shù)的混合運算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點,求出所求式子的值.9.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分數(shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應(yīng)用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點睛】考查了有理數(shù)運算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運算.本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.10.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.11.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運算中的規(guī)律探索,根據(jù)已知運算得出數(shù)字之間的變化規(guī)律是解決問題的關(guān)鍵.12.(1);(2)見解析;(3)【分析】(1)根據(jù)的定義,可以直接計算得出;(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可以得到:;(3)根據(jù)(2)中的結(jié)論,猜想:.【詳解】解:(1)已知,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,;同樣,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,.(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設(shè),由(2)的結(jié)論可以得到:,,,根據(jù)三位數(shù)的特點,可知必然有:,,故答案是:.【點睛】此題考查了多位數(shù)的數(shù)字特征,每個數(shù)字是10以內(nèi)的自然數(shù)且不為0,解題的關(guān)鍵是:結(jié)合新定義,可以計算出問題的解,注意把握每個數(shù)字都會出現(xiàn)一次的特點,區(qū)別數(shù)字與多為數(shù)的不同.13.(1),;(2),理由見解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長度,即可得到D、C的坐標;(2)連接BD與直線CG相交,其交點Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點坐標;(3)過H作HF∥AB,過C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點坐標為(-4+6,-1)即(2,-1),D點坐標為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時最?。▋牲c之間,線段最短),過作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過作,又∵,∴,∴,∴.過作,∴,.∵于,∴,∴,∴,又∵,∴.【點睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標變換規(guī)律、兩點之間線段最短的性質(zhì)、角的有關(guān)知識和運算是解題關(guān)鍵.14.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運用平行線的性質(zhì)是解題的關(guān)鍵.15.(1),;(2)點D的坐標為或;(3)之間的數(shù)量關(guān)系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當(dāng)點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當(dāng)點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當(dāng)點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當(dāng)點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點D在線段OA上,和OA延長線上兩種情況.16.(1)A、B兩種型號電風(fēng)扇的銷售單價分別為250元、210元;(2)超市最多采購A種型號電風(fēng)扇10臺時,采購金額不多于5400元;(3)超市不能實現(xiàn)利潤1400元的目標;【分析】(1)根據(jù)第一周和第二周的銷售量和銷售收入,可列寫2個等式方程,再求解二元一次方程組即可;(2)利用不多于5400元這個量,列寫不等式,得到A型電風(fēng)扇a臺的一個取值范圍,從而得出a的最大值;(3)將B型電風(fēng)扇用(30-a)表示出來,列寫A、B兩型電風(fēng)扇利潤為1400的等式方程,可求得a的值,最后在判斷求解的值是否滿足(2)中a的取值范圍即可【詳解】解:(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價分別為x元、y元,依題意得:,解得:,答:A、B兩種型號電風(fēng)扇的銷售單價分別為250元、210元.(2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(30-a)臺.依題意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采購A種型號電風(fēng)扇10臺時,采購金額不多于5400元;(3)依題意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤1400元的目標.【點睛】本題是二元一次方程和一元一次不等式應(yīng)用題的綜合考查,解題關(guān)鍵是依據(jù)題意,找出等量關(guān)系式(不等關(guān)系式),然后按照題目要求相應(yīng)求解17.(1),;(2)或;(3)【分析】(1)根據(jù)非負數(shù)和為0,則每一個非負數(shù)都是0,即可求出a,b的值;(2)設(shè)直線AB與直線x=1交于點N,可得N(1,5),根據(jù)S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據(jù)題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設(shè)直線與直線交于,設(shè)∵a=?4,b=4,∴A(?4,0),B(0,4),設(shè)直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當(dāng)點P在OA邊上時,則2t=2,∴t=1,當(dāng)點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質(zhì)、一般三角形面積的和差表示、以及非負數(shù)的性質(zhì)等知識點,第(2)問中用絕對值來表示動點構(gòu)成的線段長度是正確解題的關(guān)鍵.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應(yīng)點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結(jié)合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)“買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元”列出方程組,再根據(jù)方程組的特征求出,進一步可求出;(3)根據(jù)新定義,將數(shù)值代入新定義里,列方程組求解即可得出答案.【詳解】(1)解:①+②,得;①-②,得;故答案為:-1,1;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)題意,得:①×②-②得∴(元)答:5本日記本共需30元.(3)①②得∴.【點睛】本題考查了三元一次方程組的應(yīng)用,熟練讀懂題干中的“整體思想”是解題的關(guān)鍵.20.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學(xué)常識以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)找準等量關(guān)系,正確列出二元一次方程.21.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據(jù)題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據(jù)等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設(shè)S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點作于點,設(shè),,;,.,即.同理,...①,,.②由①②,得,.(3)設(shè),,如圖所示.依題意,得,..,.,,...【點睛】此題考查了三角形面積之間的關(guān)系.(2)的關(guān)鍵是設(shè)出未知三角形的面積,然后根據(jù)等高不等底的三角形的面積的比等于底邊的比列式求解.22.(1)A的單價30元,B的單價15元(2)購買A獎品8個,購買B獎品22個,花費最少【分析】(1)設(shè)A的單價為x元,B的單價為y元,根據(jù)題意列出方程組,即可求解;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,根據(jù)題意得到由題意可知,,,根據(jù)一次函數(shù)的性質(zhì),即可求解;【詳解】解:(1)設(shè)A的單價為x元,B的單價為y元,根據(jù)題意,得,,A的單價30元,B的單價15元;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,由題意可知,,,,當(dāng)時,W有最小值為570元,即購買A獎品8個,購買B獎品22個,花費最少;【點睛】本題考查二元一次方程組的應(yīng)用,一次函數(shù)的應(yīng)用;能夠根據(jù)條件列出方程組,將最優(yōu)方案轉(zhuǎn)化為一次函數(shù)性質(zhì)解題是關(guān)鍵.23.(1)15;(2)①七年級(1)班有24人得滿分;②七年級(2)班的總分高.【分析】(1)分別對連正確的數(shù)量進行分析,即可得到答案;(2)①設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據(jù)題意,先求出兩個班各分數(shù)段的人數(shù),然后求出各班的總分,即可進行比較.【詳解】解:(1)根據(jù)題意,連對0個得分為0分;連對一個得分為5分;連對兩個得分為10分;連對四個得分為20分;不存在連對三個的情況,則得15分是不可能的;故答案為:15.(2)①根據(jù)題意,設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據(jù)題意,(1)班中除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,∴(1)班得5分和10分的人數(shù)相等,人數(shù)為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設(shè)得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點睛】本題考查了二元一次方程的應(yīng)用,一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練掌握題意,正確掌握題目的等量關(guān)系,列出方程進行解題.24.(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據(jù)新運算定義建立方程組,解方程組即可得出答案;(2)應(yīng)用新運算定義建立方程組,解關(guān)于、的方程組可得,進而得出,再運用不等式性質(zhì)即可得出答案;(3)根據(jù)題意得,由平移可得,根據(jù)點落在坐標軸上,且,分類討論即可.【詳解】解:(1)根據(jù)新運算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個單位,得線段,,點落在坐標軸上,且,或,或;①當(dāng)時,,若點在軸上,,,或;若點在軸上,,,或;②當(dāng)時,;點只能在軸上,,,或;綜上所述,點的坐標為或或或或或.【點睛】本題考查了新運算定義,解二元一次方程組,不等式性質(zhì),平移變換的性質(zhì),理解并應(yīng)用新運算定義是解題關(guān)鍵.25.(1)該店三月份售出A種手機24部,B種手機10部;(2)共有5種進貨方案,分別是A種手機21部,B種手機19部;A種手機22部,B種手機18部;A種手機23部,B種手機17部;A種手機24部,B種手機16部;A種手機25部,B種手機15部【分析】(1)設(shè)該店三月份售出A種手機x部,B種手機y部,由“三月份銷售A、B兩種手機共34部,且銷售A種手機的利潤恰好是銷售B種手機利潤的2倍”列出方程組,可求解;(2)設(shè)A種手機a部,B種手機(40﹣a)部,由“購進B種手機數(shù)不低于A種手機數(shù)的,用于購買這兩種手機的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設(shè)該店三月份售出A種手機x部,B種手機y部,由題意可得:,解得:,答:該店三月份售出A種手機24部,B種手機10部;(2)設(shè)A種手機a部,B種手機(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數(shù),∴a=21,22,23,24,25,∴共有5種進貨方案,分別是A種手機21部,B種手機19部;A種手機22部,B種手機18部;A種手機23部,B種手機17部;A種手機24部,B種手機16部;A種手機25部,B種手機15部.【點睛】本題考查了一元一次不等式組解實際問題的運用,二元一次方程組解實際問題的運用,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.26.(1);(2)【分析】(1)根據(jù)題意設(shè)盒底邊長,接口的寬度,分別為,,根據(jù)題意列方程組,再根據(jù)長寬高求得體積;(2)分別設(shè)第一個月和第二個月的銷售量為盒,根據(jù)題意列出方程和不等式組,根據(jù)不等式確定二元一次方程的解,兩個月的銷售總量為盒【詳解】(1)設(shè)設(shè)盒底邊長為,接口的寬度為,則盒高是,根據(jù)題意得:解得:茶葉盒的容積是:答:該茶葉盒的容積是(2)設(shè)第一個月銷售了盒,第二個月銷售了盒,根據(jù)題意得:化簡得:①第一個月只售出不到一半但超過三分之一的量即由①得:解得:是整數(shù),所以為5的倍數(shù)或者或者答:這批茶葉共進了或者盒.【點睛】本題考查了二元一次方程組的應(yīng)用,一元一次不等式組的求解,理解題意列出方程組和不等式組是解題的關(guān)鍵.27.(1)點的坐標為,點的坐標為;(2)①45°;②【分析】(1)根據(jù)可得,,,,即可求得a、c的值,坐標可求;2)①作PH∥AD,根據(jù)角平分線的定義、平行線的性質(zhì)計算,得到答案;②連接AB,交y軸于F,根據(jù)點的坐標特征分別求出S△ABC、S△ABD,根據(jù)題意列出不等式,解不等式即可.【詳解】解:(1)由題意得,,,,解得,,,則點的坐標為,點的坐標為;(2)①如圖1,作,∵,∴,∵,∴,∵,∴,∴,∵與的平分線交于點,∴,,∴,∵,,∴,,∴;②連接,交軸于,∵,∴,即,∵,,,∴,過作軸的平行線,作、垂直,交于點、,,,由題意得,,解得,,∵點為軸正半軸上的一個動點,∴.【點睛】本題考查的是二元一次方程的定義、平行線的性質(zhì)、坐標與圖形性質(zhì)、三角形的面積計算,一元一次不等式,掌握平行線的性質(zhì)、三角形面積公式是解題的關(guān)鍵.28.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在數(shù)軸上到2對應(yīng)的點的距離等于3的點對應(yīng)的數(shù)求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在數(shù)軸上找出|x-4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024暑假工合同范本:暑期兼職員工服務(wù)條款3篇
- 2024版室內(nèi)水電布線與裝修承包合同書版B版
- 2024版高性能計算服務(wù)合同
- 2025年滬科版四年級語文下冊月考試卷
- 思維課堂建設(shè)的策略與路徑探索與實踐
- 2025年魯教新版一年級數(shù)學(xué)下冊階段測試試卷
- 二零二五年度工業(yè)用地廠房買賣合同(含員工宿舍)3篇
- 2024年精裝會所裝修協(xié)議模板版
- 2024年北師大版八年級科學(xué)下冊階段測試試卷
- 2025年新科版七年級地理上冊月考試卷含答案
- 附件2:慢病管理中心評審實施細則2024年修訂版
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之4:“4組織環(huán)境-確定創(chuàng)新管理體系的范圍”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- 2024-2030年中國散熱產(chǎn)業(yè)運營效益及投資前景預(yù)測報告
- 和父親斷絕聯(lián)系協(xié)議書范本
- 2024時事政治考試題庫(100題)
- 2024地理知識競賽試題
- 《城市軌道交通工程盾構(gòu)吊裝技術(shù)規(guī)程》(征求意見稿)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 【新教材】統(tǒng)編版(2024)七年級上冊語文期末復(fù)習(xí)課件129張
- 欽州市浦北縣2022-2023學(xué)年七年級上學(xué)期期末語文試題
- 古典時期鋼琴演奏傳統(tǒng)智慧樹知到期末考試答案章節(jié)答案2024年星海音樂學(xué)院
評論
0/150
提交評論