上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市寶山區(qū)高境一中2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.2.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.243.已知圓C的圓心在直線上,且與直線相切于點,則圓C方程為()A. B.C. D.4.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)5.《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機調(diào)查了100學(xué)生,其中閱讀過《西游記》或《紅樓夢》的學(xué)生共有90位,閱讀過《紅樓夢》的學(xué)生共有80位,閱讀過《西游記》且閱讀過《紅樓夢》的學(xué)生共有60位,則該校閱讀過《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計值為A. B.C. D.6.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形7.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.28.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.9.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?,得到“微”,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼?,得到“商”……依此?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列10.已知直線,橢圓.若直線l與橢圓C交于A,B兩點,則線段AB的中點的坐標為()A. B.C. D.11.已知橢圓的左、右焦點分別為,,直線過且與橢圓相交于不同的兩點,、不在軸上,那么△的周長()A.是定值B.是定值C.不是定值,與直線的傾斜角大小有關(guān)D.不是定值,與取值大小有關(guān)12.已知二次函數(shù)交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù)、滿足,則的最大值為__________14.已知函數(shù),則f(e)=__.15.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號為1~64,若已知8號、24號、56號在樣本中,那么樣本中最后一個員工的號碼是__________16.若橢圓:的長軸長為4,焦距為2,則橢圓的標準方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.18.(12分)中,內(nèi)角、、所對的邊為、、,.(1)求角的大??;(2)若、、成等差數(shù)列,且,求邊長的值.19.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值21.(12分)如圖,在三棱錐中,,平面,,分別為棱,的中點.(1)求證:;(2)若,,二面角的大小為,求三棱錐的體積.22.(10分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D2、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B3、C【解析】設(shè)出圓心坐標,根據(jù)垂直直線的斜率關(guān)系求得圓心坐標,結(jié)合兩點距離公式得半徑,即可得圓方程【詳解】設(shè)圓心為,則圓心與點的連線與直線l垂直,即,則點,所以圓心為,半徑,所以方程為,故選:C4、B【解析】根據(jù)空間向量線性運算的坐標表示即可得出答案.【詳解】解:因為,,所以.故選:B.5、C【解析】根據(jù)題先求出閱讀過西游記人數(shù),進而得解.【詳解】由題意得,閱讀過《西游記》的學(xué)生人數(shù)為90-80+60=70,則其與該校學(xué)生人數(shù)之比為70÷100=0.7.故選C【點睛】本題考查容斥原理,滲透了數(shù)據(jù)處理和數(shù)學(xué)運算素養(yǎng).采取去重法,利用轉(zhuǎn)化與化歸思想解題6、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.7、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.8、A【解析】不妨設(shè)橢圓的焦點在軸上,設(shè)點,則,且有,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】不妨設(shè)橢圓的焦點在軸上,則該橢圓的標準方程為,設(shè)點,則,且有,所以,.故選:A.9、C【解析】根據(jù)文化知識,分別求出相對應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題10、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達定理可得,進而得出中點的橫坐標,代入直線方程求出中點的縱坐標即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點中點的橫坐標為:,所以中點的縱坐標為:,即線段AB的中點的坐標為.故選:B11、B【解析】由直線過且與橢圓相交于不同的兩點,,且,為橢圓兩焦點,根據(jù)橢圓的定義即可得△的周長為,則答案可求【詳解】橢圓,橢圓的長軸長為,∴△的周長為故選:B12、C【解析】由已知求得點A、B、C的坐標,則有AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學(xué)生的計算能力.14、【解析】由導(dǎo)數(shù)得出,再求.【詳解】∵,∴,,解得,,,故答案為:.15、40【解析】結(jié)合系統(tǒng)抽樣的抽樣方法來確定最后抽取的號碼.【詳解】因為分段間隔為,故最后一個員工的號碼為.故答案為:16、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標準方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因為,面,面,所以面,同理面,又因為面,所以面面.【小問2詳解】解:因為在圖①等腰梯形中,分別為的中點,所以,在圖②多面體中,因為,面,,所以面.因為,面面,面,面面,所以面,又因為面,所以,在直角三角形中,因為,所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.18、(1);(2).【解析】(1)利用正弦定理可求得的值,結(jié)合角的取值范圍可求得角的值;(2)由三角形的面積公式可求得的值,由已知可得,利用余弦定理可得出關(guān)于的等式,即可求得邊的長.【小問1詳解】解:因為,由正弦定理可得,,則,可得,,,因此,.【小問2詳解】解:,可得,因為、、成等差數(shù)列,則,由余弦定理可得,解得.19、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進行運算得到關(guān)于b的關(guān)系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.20、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當且僅當時等號成立,故,面積最大值為21、(1)證明見解析;(2).【解析】(1)利用線面垂直的判定定理及性質(zhì)即證;(2)利用坐標法,結(jié)合條件可求,然后利用體積公式即求.【小問1詳解】,是的中點,,平面,平面,,又,平面,平面,;【小問2詳解】,,,取的中點,連接,則,平面,以為坐標原點,分別以、、所在直線為、、軸建立空間直角坐標系,設(shè),則,,,,,,,,設(shè)平面的一個法向量為,由,取,得;設(shè)平面的一個法向量為,由,取,得,∵二面角的大小為,,解得,,則三棱錐的體積.22、(1)(2)或【解析】(1)根據(jù)垂徑定理,可直接計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論