版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海魯迅中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.52.函數(shù),則不等式的解集是()A. B.C. D.3.九連環(huán)是我國從古至今廣為流傳的一種益智游戲,它由九個(gè)鐵絲圓環(huán)相連成串,按一定規(guī)則移動圓環(huán)的次數(shù)決定解開圓環(huán)的個(gè)數(shù).在某種玩法中,用表示解開n(,)個(gè)圓環(huán)所需的最少移動次數(shù),若數(shù)列滿足,且當(dāng)時(shí),則解開5個(gè)圓環(huán)所需的最少移動次數(shù)為()A.10 B.16C.21 D.224.橢圓的左、右焦點(diǎn)分別為、,上存在兩點(diǎn)、滿足,,則的離心率為()A. B.C. D.5.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.6.已知直線是圓的對稱軸,過點(diǎn)A作圓C的一條切線,切點(diǎn)為B,則|AB|=()A.1 B.2C.4 D.87.已知等差數(shù)列,,,則數(shù)列的前項(xiàng)和為()A. B.C. D.8.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學(xué)生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.9.若方程表示雙曲線,則()A. B.C. D.10.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,其歐拉線方程為,則頂點(diǎn)的坐標(biāo)可以是()A. B.C. D.11.幾何學(xué)史上有一個(gè)著名的米勒問題:“設(shè)點(diǎn)、是銳角的一邊上的兩點(diǎn),試在邊上找一點(diǎn),使得最大的.”如圖,其結(jié)論是:點(diǎn)為過、兩點(diǎn)且和射線相切的圓的切點(diǎn).根據(jù)以上結(jié)論解決一下問題:在平面直角坐標(biāo)系中,給定兩點(diǎn),,點(diǎn)在軸上移動,當(dāng)取最大值時(shí),點(diǎn)的橫坐標(biāo)是()A.B.C.或D.或12.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動點(diǎn),則的最大值為_____14.圓關(guān)于y軸對稱的圓的標(biāo)準(zhǔn)方程為___________.15.寫出一個(gè)漸近線的傾斜角為且焦點(diǎn)在y軸上的雙曲線標(biāo)準(zhǔn)方程___________.16.設(shè),向量,,,且,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值(1)若對任意正實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)18.(12分)已知雙曲線()的一個(gè)焦點(diǎn)是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個(gè)不同的點(diǎn),線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程19.(12分)如圖,四邊形是矩形,平面平面,為中點(diǎn),,,(1)證明:平面平面;(2)求二面角的余弦值20.(12分)已知為各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列前n項(xiàng)和.21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計(jì)算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C2、A【解析】利用導(dǎo)數(shù)判斷函數(shù)單調(diào)遞增,然后進(jìn)行求解.【詳解】對函數(shù)進(jìn)行求導(dǎo):,因?yàn)?,,所以,因?yàn)椋詅(x)是奇函數(shù),所以在R上單調(diào)遞增,又因?yàn)?,所以的解集?故選:A3、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計(jì)算即可.【詳解】根據(jù)題意,由,得.故選:D.4、A【解析】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,推導(dǎo)出、、三點(diǎn)共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,則為、的中點(diǎn),故四邊形為平行四邊形,故且,則,所以,,故、、三點(diǎn)共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因?yàn)?,所以,在中,即,所以,離心率故選:A.5、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡.【詳解】因?yàn)?,所以,則故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡計(jì)算即可,較簡單.6、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點(diǎn)A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點(diǎn)A坐標(biāo)為,,切點(diǎn)為B則,故選:C【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7、A【解析】求出通項(xiàng),利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.【詳解】因?yàn)榈炔顢?shù)列,,,所以,所以,所以數(shù)列的前項(xiàng)和為故B,C,D錯(cuò)誤.故選:A.8、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計(jì)算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.9、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.10、C【解析】設(shè)出點(diǎn)C坐標(biāo),求出的重心并代入歐拉線方程,驗(yàn)證并排除部分選項(xiàng),余下選項(xiàng)再由外心、垂心驗(yàn)證判斷作答.【詳解】設(shè)頂點(diǎn)的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對于A,當(dāng)時(shí),,不滿足題意,排除A;對于D,當(dāng)時(shí),,不滿足題意,排除D;對于B,當(dāng)時(shí),,對于C,當(dāng)時(shí),,直線AB的斜率,線段AB中點(diǎn),線段AB中垂線方程:,即,由解得:,于是得的外心,若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),該點(diǎn)與點(diǎn)M確定直線斜率為,顯然,即點(diǎn)M不在線段BC的中垂線上,不滿足題意,排除B;若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),線段BC中垂線方程為:,即,由解得,即點(diǎn)為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時(shí)有,即的垂心在直線上,選項(xiàng)C滿足題意.故選:C【點(diǎn)睛】結(jié)論點(diǎn)睛:的三頂點(diǎn),則的重心為.11、A【解析】根據(jù)米勒問題的結(jié)論,點(diǎn)應(yīng)該為過點(diǎn)、的圓與軸的切點(diǎn),設(shè)圓心的坐標(biāo)為,寫出圓的方程,并將點(diǎn)、的坐標(biāo)代入可求出點(diǎn)的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點(diǎn)、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點(diǎn)的橫坐標(biāo)為,故選:A.12、B【解析】求出的等價(jià)條件,結(jié)合充分條件和必要條件的定義判斷可得出結(jié)論.【詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè),寫出、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當(dāng)時(shí),.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用向量數(shù)量積的坐標(biāo)表示及橢圓的有界性求最值.14、【解析】根據(jù)題意可得圓心坐標(biāo)為,半徑為1,利用平面直角坐標(biāo)系點(diǎn)關(guān)于坐標(biāo)軸對稱特征可得所求的圓心坐標(biāo)為,半徑為1,進(jìn)而得出結(jié)果.【詳解】由題意知,圓的圓心坐標(biāo)為,半徑為1,設(shè)圓關(guān)于y軸對稱的圓為,所以,半徑為1,所以的標(biāo)準(zhǔn)方程為.故答案為:15、(答案不唯一)【解析】根據(jù)已知條件寫出一個(gè)符合條件的方程即可.【詳解】如,焦點(diǎn)在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).16、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運(yùn)算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析.【解析】(1)根據(jù)極值點(diǎn)求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域?yàn)?,因?yàn)?,且在處取得極值,所以,即,得,此時(shí),當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí)。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因?yàn)閷θ我庹龑?shí)數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時(shí)取得極大值為,在時(shí)取得極小值為,因?yàn)楫?dāng)大于0趨近于0時(shí),趨近于負(fù)無窮,當(dāng)趨近于正無窮時(shí),趨近于正無窮,所以當(dāng),即時(shí),有且只有一個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有三個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有一個(gè)零點(diǎn).綜上所述:當(dāng)或時(shí),有且只有一個(gè)零點(diǎn);當(dāng)或時(shí),有且只有兩個(gè)零點(diǎn);當(dāng)時(shí)有且只有三個(gè)零點(diǎn).18、(1)(2)【解析】(1)由已知及離心率公式直接計(jì)算;(2)設(shè)直線方程為,聯(lián)立方程組可得中點(diǎn)及中垂線方程,根據(jù)三角形面積可得的值.【小問1詳解】解:由已知得,,所以,,所以所求雙曲線方程為.【小問2詳解】解:設(shè)直線的方程為,點(diǎn),聯(lián)立整理得.(*)設(shè)的中點(diǎn)為,則,,所以線段垂直平分線的方程為,即,與坐標(biāo)軸的交點(diǎn)分別為,,可得,得,,此時(shí)(*)的判別式,故直線的方程為.19、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質(zhì),證得平面,進(jìn)而可得,平面即可得證;(2)在平面ABC內(nèi)過點(diǎn)A作Ax⊥AB,以A為原點(diǎn)建立空間直角坐標(biāo)系,借助空間向量而得解.【詳解】(1)因?yàn)?,為中點(diǎn),所以,因?yàn)槭蔷匦?,所以,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,因?yàn)槠矫?,所以,又,平面,,所以平面,又平面,所以平面平面;?)在平面ABC內(nèi)過點(diǎn)A作Ax⊥AB,由(1)知,平面,故以點(diǎn)A為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)檩S,軸,軸的正方向,建立空間直角坐標(biāo)系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個(gè)法向量,設(shè)平面的法向量為,則,即,令,則,,所以,所以,因?yàn)槎娼菫殇J角,則二面角的余弦值為.【點(diǎn)睛】思路點(diǎn)睛:二面角大小求解時(shí)要注意結(jié)合實(shí)際圖形判斷所求角是銳角還是鈍角20、(1);(2).【解析】(1)先通過等比數(shù)列的基本量運(yùn)算求出公比,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,然后根據(jù)錯(cuò)位相減法求得答案.【小問1詳解】設(shè)等比數(shù)列公比為q,,,,(負(fù)值舍去),所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒童康復(fù)治療知識試題及答案
- 自考《00233 稅法》考前強(qiáng)化練習(xí)試題庫(含答案)
- 2025年河北藝術(shù)職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年江漢藝術(shù)職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年杭州萬向職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 專題06 人的由來(第1期)
- 私人銀行金融服務(wù)合同
- 投資咨詢服務(wù)合同模板
- 第二節(jié)國際貨物運(yùn)輸合同
- 贖樓借款標(biāo)準(zhǔn)合同
- 2025江蘇太倉水務(wù)集團(tuán)招聘18人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024-2025學(xué)年人教新版高二(上)英語寒假作業(yè)(五)
- 借款人解除合同通知書(2024年版)
- 江蘇省泰州市靖江市2024屆九年級下學(xué)期中考一模數(shù)學(xué)試卷(含答案)
- 沐足店長合同范例
- 《旅游資料翻譯》課件
- 2024年安徽省中考數(shù)學(xué)試卷含答案
- 2024年湖南省公務(wù)員錄用考試《行測》真題及答案解析
- 微項(xiàng)目 探討如何利用工業(yè)廢氣中的二氧化碳合成甲醇-2025年高考化學(xué)選擇性必修第一冊(魯科版)
- 廣東省廣州市黃埔區(qū)2024-2025學(xué)年八年級物理上學(xué)期教學(xué)質(zhì)量監(jiān)測試題
- 水產(chǎn)品冷凍加工原料處理與加工技術(shù)考核試卷
評論
0/150
提交評論