版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市靜安區(qū)市級(jí)名校2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱為世界三大數(shù)學(xué)家.有一類三角形叫做阿基米德三角形(過(guò)拋物線的弦與過(guò)弦端點(diǎn)的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.32.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件3.已知點(diǎn),和直線,若在坐標(biāo)平面內(nèi)存在一點(diǎn)P,使,且點(diǎn)P到直線l的距離為2,則點(diǎn)P的坐標(biāo)為()A.或 B.或C.或 D.或4.已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.25.如圖,在三棱錐中,,則三棱錐外接球的表面積是()A. B.C. D.6.已知,若,則()A. B.2C. D.e7.函數(shù)的圖像大致是()A. B.C. D.8.為迎接2022年冬奧會(huì),某校在體育冰球課上加強(qiáng)冰球射門訓(xùn)練,現(xiàn)從甲、乙兩隊(duì)中各選出5名球員,并分別將他們依次編號(hào)為1,2,3,4,5進(jìn)行射門訓(xùn)練,他們的進(jìn)球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說(shuō)法正確的是()A.甲隊(duì)球員進(jìn)球的中位數(shù)比乙隊(duì)大 B.乙隊(duì)球員進(jìn)球的中位數(shù)比甲隊(duì)大C.乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定 D.甲隊(duì)球員進(jìn)球數(shù)的極差比乙隊(duì)小9.下列說(shuō)法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個(gè)平面向量滿足,則不共線”的否命題是真命題.10.已知四棱錐,底面為平行四邊形,分別為,上的點(diǎn),,設(shè),則向量用為基底表示為()A. B.C. D.11.下列函數(shù)求導(dǎo)錯(cuò)誤的是()A.B.C.D.12.南北朝時(shí)期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個(gè)平行平面之間的幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,現(xiàn)有一個(gè)圓柱體和一個(gè)長(zhǎng)方體,它們的底面面積相等,高也相等,若長(zhǎng)方體的底面周長(zhǎng)為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱柱中,底面積為,一個(gè)側(cè)面的周長(zhǎng)為,則正三棱柱外接球的表面積為_(kāi)_____.14.曲線圍成的圖形的面積為_(kāi)__________.15.過(guò)拋物線的焦點(diǎn)作傾斜角為的直線,與拋物線分別交于兩點(diǎn)(點(diǎn)在軸上方),_________16.已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)為,直線交橢圓于兩點(diǎn).若,點(diǎn)到直線的距離不小于,則橢圓的離心率的取值范圍是______________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和18.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(diǎn)(1)求證:平面;(2)求證:平面19.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值20.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面的距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說(shuō)明理由21.(12分)已如橢圓C:=1(a>b>0)的有頂點(diǎn)為M(2,0),且離心率e=,點(diǎn)A,B是橢圓C上異于點(diǎn)M的不同的兩點(diǎn)(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過(guò)定點(diǎn)22.(10分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當(dāng)過(guò)焦點(diǎn)的弦垂直于x軸時(shí),即時(shí),,即,故選:D2、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因?yàn)椋海?,所以,所以為q的既不充分又不必要條件.故選:D.3、C【解析】設(shè)點(diǎn)的坐標(biāo)為,根據(jù),點(diǎn)到直線的距離為,聯(lián)立方程組即可求解.【詳解】解:設(shè)點(diǎn)的坐標(biāo)為,線段的中點(diǎn)的坐標(biāo)為,,∴的垂直平分線方程為,即,∵點(diǎn)在直線上,∴,又點(diǎn)到直線:的距離為,∴,即,聯(lián)立可得、或、,∴所求點(diǎn)的坐標(biāo)為或,故選:C4、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時(shí),,即,解得;當(dāng)時(shí),恒成立,的零點(diǎn)為又當(dāng)時(shí),為增函數(shù),故在,上無(wú)極值點(diǎn);當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,時(shí),取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題5、A【解析】根據(jù)題意,將該幾何體放置于正方體中截得,進(jìn)而轉(zhuǎn)化為求邊長(zhǎng)為2的正方體的外接球,再求解即可.【詳解】解:因?yàn)樵谌忮F中,,所以將三棱錐補(bǔ)形成正方體如圖所示,正方體的邊長(zhǎng)為2,則體對(duì)角線長(zhǎng)為,外接球的半徑為,所以外接球的表面積為,故選:.6、B【解析】求得導(dǎo)函數(shù),則,計(jì)算即可得出結(jié)果.【詳解】,.,解得:.故選:B7、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長(zhǎng)趨勢(shì)即可判斷.【詳解】當(dāng)時(shí),,∴在上單調(diào)遞增,當(dāng)時(shí),,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長(zhǎng)趨勢(shì),排除C.故選:B8、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項(xiàng)的正誤.【詳解】由題圖,甲隊(duì)數(shù)據(jù)從小到大排序?yàn)?,乙?duì)數(shù)據(jù)從小到大排序?yàn)?,所以甲乙兩?duì)的平均數(shù)都為5,甲、乙進(jìn)球中位數(shù)相同都為5,A、B錯(cuò)誤;甲隊(duì)方差為,乙隊(duì)方差為,即,故乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定,C正確.甲隊(duì)極差為6,乙隊(duì)極差為4,故甲隊(duì)極差比乙隊(duì)大,D錯(cuò)誤.故選:C9、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時(shí),、至少有一個(gè)為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對(duì)于A,命題“若,則”的逆命題是:若,則;因?yàn)橐渤闪?所以A不正確;對(duì)于B,命題“”為假命題時(shí),、至少有一個(gè)為假命題,所以B錯(cuò)誤;C錯(cuò)誤;對(duì)于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點(diǎn)睛】本題考查了命題的真假性判斷問(wèn)題,也考查了推理與判斷能力,是基礎(chǔ)題10、D【解析】通過(guò)尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D11、C【解析】每一個(gè)選項(xiàng)根據(jù)求導(dǎo)公式及法則來(lái)運(yùn)算即可判斷.【詳解】對(duì)于A,,正確;對(duì)于B,,正確;對(duì)于C,,不正確;對(duì)于D,,正確.故選:C12、C【解析】由條件可得長(zhǎng)方體的體積為,設(shè)長(zhǎng)方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.【詳解】依題意長(zhǎng)方體的體積為,設(shè)圓柱的高為長(zhǎng)方體的底面相鄰兩邊分別為,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,.故選:C.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查基本不等式求最值,要認(rèn)真審題,理解題意,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先由條件求出底面邊長(zhǎng)和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長(zhǎng)度即可.【詳解】如圖所示,設(shè)底面邊長(zhǎng)為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€(gè)側(cè)面的周長(zhǎng)為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.14、##【解析】曲線圍成圖形關(guān)于軸,軸對(duì)稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于軸,軸對(duì)稱,因此只需求出第一象限的面積即可.當(dāng),時(shí),曲線可化為:,表示的圖形為一個(gè)半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.15、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.16、【解析】設(shè)左焦點(diǎn)為,連接,.則四邊形是平行四邊形,可得.設(shè),由點(diǎn)M到直線l的距離不小于,即有,解得.再利用離心率計(jì)算公式即可得出范圍【詳解】設(shè)左焦點(diǎn)為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點(diǎn)睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)an=n(2)【解析】(1)由已知條件可得(d+2)2=2d+7,從而可求出公差,進(jìn)而可求得數(shù)列的通項(xiàng)公式,(2)由(1)得,然后利用錯(cuò)位相減法求【小問(wèn)1詳解】因a1,a2+1,a3+6成等比數(shù)列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小問(wèn)2詳解】因?yàn)?,所以,所以,所以所?8、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)連接,交于點(diǎn)M,連接ME,則M為中點(diǎn).根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質(zhì)和判定可得證.【詳解】證明:(1)連接,交于點(diǎn)M,連接ME,則M為中點(diǎn)因?yàn)镋、F分別是與的中點(diǎn),所以,則,從而為平行四邊形,則又因?yàn)槠矫嫫矫?,所以平面?)由平面,因?yàn)槠矫妫远?,M為的中點(diǎn),所以因?yàn)?,所以平面,由?)有,故平面19、(1)證明見(jiàn)解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問(wèn)1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問(wèn)2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問(wèn)1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)椋云矫?,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)椋裕驗(yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因,所以,所以,得,所以點(diǎn)到平面的距離為【小問(wèn)2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(I);(II)證明見(jiàn)解析.【解析】(I)根據(jù)頂點(diǎn)坐標(biāo)求得,根據(jù)離心率求得,由此求得,進(jìn)而求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出根與系數(shù)關(guān)系,根據(jù),求得的關(guān)系式,由此判斷直線過(guò)定點(diǎn).【詳解】(I)由于是橢圓的頂點(diǎn),所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點(diǎn)的不同的兩點(diǎn),所以可設(shè)直線的方程為,設(shè),由消去并化簡(jiǎn)得,所以,即.,,,,解得,所以直線的方程為,過(guò)定點(diǎn).【點(diǎn)睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問(wèn)題.22、(1)時(shí),函數(shù)在單調(diào)遞增,無(wú)減區(qū)間;時(shí),函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 集中供熱主管網(wǎng)提升工程監(jiān)理項(xiàng)目投標(biāo)方案(技術(shù)方案)
- 阜陽(yáng)師范大學(xué)《舞蹈二》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《教育技術(shù)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年組裝機(jī)械項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 徐州市2024-2025學(xué)年六年級(jí)上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷一(有答案)
- 2024年二級(jí)建造師管理-學(xué)霸筆記
- 福建師范大學(xué)《素描(2)》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《人力資源開(kāi)發(fā)與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 江豐電子首次覆蓋:超高純?yōu)R射靶材領(lǐng)軍者半導(dǎo)體零部件強(qiáng)勁成長(zhǎng)
- 福建師范大學(xué)《教育社會(huì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023-2024學(xué)年河北省滄州市八年級(jí)上學(xué)期期中考試歷史質(zhì)量檢測(cè)模擬試題(含解析)
- 國(guó)企“三重一大”決策事項(xiàng)清單
- 電氣工程師生涯人物訪談報(bào)告
- 我的家鄉(xiāng)湖北咸寧介紹
- 上海民辦尚德實(shí)驗(yàn)學(xué)校小升初數(shù)學(xué)期末試卷檢測(cè)題(Word版-含答案)
- 化學(xué)實(shí)驗(yàn)室安全應(yīng)急智慧系統(tǒng)建設(shè)和實(shí)驗(yàn)規(guī)范
- 老年抑郁量表
- 特殊過(guò)程確認(rèn)報(bào)告
- BJ單身日記-英文臺(tái)詞劇本解析
- 幼兒園好習(xí)慣好性格養(yǎng)成繪本:壞脾氣的蛋糕
- CPK-數(shù)據(jù)自動(dòng)生成器
評(píng)論
0/150
提交評(píng)論