版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2020-2021備戰(zhàn)中考數(shù)學(xué)壓軸題專題復(fù)習(xí)——二次函數(shù)的綜合附答案一、二次函數(shù)1.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.【答案】(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點(diǎn)的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點(diǎn)D的坐標(biāo),利用交點(diǎn)式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點(diǎn)G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點(diǎn)P的坐標(biāo);同理可得其他圖形中點(diǎn)P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點(diǎn)為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點(diǎn)G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點(diǎn)P的坐標(biāo)是:(,)或(,)或(,)或(,).點(diǎn)睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運(yùn)用配方法,解第(3)問時需要運(yùn)用分類討論思想和方程的思想解決問題.2.(10分)(2015?佛山)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.(1)請用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點(diǎn)M的坐標(biāo).【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點(diǎn)式,即可求出二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點(diǎn)A的坐標(biāo);(3)作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計算即可求解;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點(diǎn)M的坐標(biāo).試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo)為(2,4);(2)聯(lián)立兩解析式可得:,解得:,或.故可得點(diǎn)A的坐標(biāo)為(,);(3)如圖,作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,∵P的坐標(biāo)為(2,4),∴4=×2+b,解得b=3,∴直線PM的解析式為y=x+3.由,解得,,∴點(diǎn)M的坐標(biāo)為(,).考點(diǎn):二次函數(shù)的綜合題3.如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對稱軸是直線l,l與x軸交于點(diǎn)H.(1)求該拋物線的解析式;(2)若點(diǎn)P是該拋物線對稱軸l上的一個動點(diǎn),求△PBC周長的最小值;(3)如圖(2),若E是線段AD上的一個動點(diǎn)(E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.①求S與m的函數(shù)關(guān)系式;②S是否存在最大值?若存在,求出最大值及此時點(diǎn)E的坐標(biāo);若不存在,請說明理由.【答案】(1).(2).(3)①.②當(dāng)m=﹣2時,S最大,最大值為1,此時點(diǎn)E的坐標(biāo)為(﹣2,2).【解析】【分析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可.(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時,△PBC的周長最小,根據(jù)點(diǎn)的坐標(biāo)求得相應(yīng)線段的長即可.(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長,從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可.【詳解】解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),∴可設(shè)拋物線交點(diǎn)式為.又∵拋物線經(jīng)過C(0,3),∴.∴拋物線的解析式為:,即.(2)∵△PBC的周長為:PB+PC+BC,且BC是定值.∴當(dāng)PB+PC最小時,△PBC的周長最小.∵點(diǎn)A、點(diǎn)B關(guān)于對稱軸I對稱,∴連接AC交l于點(diǎn)P,即點(diǎn)P為所求的點(diǎn).∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC.∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=.∴△PBC的周長最小是:.(3)①∵拋物線頂點(diǎn)D的坐標(biāo)為(﹣1,4),A(﹣3,0),∴直線AD的解析式為y=2x+6∵點(diǎn)E的橫坐標(biāo)為m,∴E(m,2m+6),F(xiàn)(m,)∴.∴.∴S與m的函數(shù)關(guān)系式為.②,∴當(dāng)m=﹣2時,S最大,最大值為1,此時點(diǎn)E的坐標(biāo)為(﹣2,2).4.(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3m,到地面OA的距離為m.(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?【答案】(1)拋物線的函數(shù)關(guān)系式為y=x2+2x+4,拱頂D到地面OA的距離為10m;(2)兩排燈的水平距離最小是4m.【解析】【詳解】試題分析:根據(jù)點(diǎn)B和點(diǎn)C在函數(shù)圖象上,利用待定系數(shù)法求出b和c的值,從而得出函數(shù)解析式,根據(jù)解析式求出頂點(diǎn)坐標(biāo),得出最大值;根據(jù)題意得出車最外側(cè)與地面OA的交點(diǎn)為(2,0)(或(10,0)),然后求出當(dāng)x=2或x=10時y的值,與6進(jìn)行比較大小,比6大就可以通過,比6小就不能通過;將y=8代入函數(shù),得出x的值,然后進(jìn)行做差得出最小值.試題解析:(1)由題知點(diǎn)在拋物線上所以,解得,所以所以,當(dāng)時,答:,拱頂D到地面OA的距離為10米(2)由題知車最外側(cè)與地面OA的交點(diǎn)為(2,0)(或(10,0))當(dāng)x=2或x=10時,,所以可以通過(3)令,即,可得,解得答:兩排燈的水平距離最小是考點(diǎn):二次函數(shù)的實(shí)際應(yīng)用.5.如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.(1)求二次函數(shù)的表達(dá)式;(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個動點(diǎn),求面積的最大值;(3)拋物線對稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請直接寫出所有點(diǎn)的坐標(biāo),若不存在請說明理由.【答案】(1)二次函數(shù)的解析式為;(2)當(dāng)時,的面積取得最大值;(3)點(diǎn)的坐標(biāo)為,,.【解析】分析:(1)把已知點(diǎn)坐標(biāo)代入函數(shù)解析式,得出方程組求解即可;(2)根據(jù)函數(shù)解析式設(shè)出點(diǎn)D坐標(biāo),過點(diǎn)D作DG⊥x軸,交AE于點(diǎn)F,表示△ADE的面積,運(yùn)用二次函數(shù)分析最值即可;(3)設(shè)出點(diǎn)P坐標(biāo),分PA=PE,PA=AE,PE=AE三種情況討論分析即可.詳解:(1)∵二次函數(shù)y=ax2+bx+c經(jīng)過點(diǎn)A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函數(shù)的解析式為:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直線解析式為y=,過點(diǎn)D作DN⊥x軸,交AE于點(diǎn)F,交x軸于點(diǎn)G,過點(diǎn)E作EH⊥DF,垂足為H,如圖,設(shè)D(m,),則點(diǎn)F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴當(dāng)m=時,△ADE的面積取得最大值為.(3)y=的對稱軸為x=﹣1,設(shè)P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三種情況討論:當(dāng)PA=PE時,=,解得:n=1,此時P(﹣1,1);當(dāng)PA=AE時,=,解得:n=,此時點(diǎn)P坐標(biāo)為(﹣1,);當(dāng)PE=AE時,=,解得:n=﹣2,此時點(diǎn)P坐標(biāo)為:(﹣1,﹣2).綜上所述:P點(diǎn)的坐標(biāo)為:(﹣1,1),(﹣1,),(﹣1,﹣2).點(diǎn)睛:本題主要考查二次函數(shù)的綜合問題,會求拋物線解析式,會運(yùn)用二次函數(shù)分析三角形面積的最大值,會分類討論解決等腰三角形的頂點(diǎn)的存在問題時解決此題的關(guān)鍵.6.如圖,拋物線y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過點(diǎn)B,C.(1)求拋物線的解析式;(2)過點(diǎn)A的直線交直線BC于點(diǎn)M.①當(dāng)AM⊥BC時,過拋物線上一動點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo);②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點(diǎn)M的坐標(biāo).【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)①P點(diǎn)的橫坐標(biāo)為4或或;②點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).【解析】分析:(1)利用一次函數(shù)解析式確定C(0,-5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45°,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45°得到PD=PQ=4,設(shè)P(m,-m2+6m-5),則D(m,m-5),討論:當(dāng)P點(diǎn)在直線BC上方時,PD=-m2+6m-5-(m-5)=4;當(dāng)P點(diǎn)在直線BC下方時,PD=m-5-(-m2+6m-5),然后分別解方程即可得到P點(diǎn)的橫坐標(biāo);②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,-2),AC的解析式為y=5x-5,E點(diǎn)坐標(biāo)為(,-),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=-x+b,把E(,-)代入求出b得到直線EM1的解析式為y=-x-,則解方程組得M1點(diǎn)的坐標(biāo);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x-5),根據(jù)中點(diǎn)坐標(biāo)公式得到3=,然后求出x即可得到M2的坐標(biāo),從而得到滿足條件的點(diǎn)M的坐標(biāo).詳解:(1)當(dāng)x=0時,y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時,x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴拋物線解析式為y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),∵B(5,0),C(0,﹣5),∴△OCB為等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB為等腰直角三角形,∴AM=AB=×4=2,∵以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45°,∴PD=PQ=×2=4,設(shè)P(m,﹣m2+6m﹣5),則D(m,m﹣5),當(dāng)P點(diǎn)在直線BC上方時,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,當(dāng)P點(diǎn)在直線BC下方時,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,綜上所述,P點(diǎn)的橫坐標(biāo)為4或或;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,∵M(jìn)1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB為等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式為y=5x﹣5,E點(diǎn)坐標(biāo)為(,﹣,設(shè)直線EM1的解析式為y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直線EM1的解析式為y=﹣x﹣解方程組得,則M1(,﹣);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,則∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x﹣5),∵3=∴x=,∴M2(,﹣).綜上所述,點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).點(diǎn)睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、等腰直角的判定與性質(zhì)和平行四邊形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會運(yùn)用分類討論的思想解決數(shù)學(xué)問題.7.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時,△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.8.在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2x+a﹣3,當(dāng)a=0時,拋物線與y軸交于點(diǎn)A,將點(diǎn)A向右平移4個單位長度,得到點(diǎn)B.(1)求點(diǎn)B的坐標(biāo);(2)將拋物線在直線y=a上方的部分沿直線y=a翻折,圖象的其他部分保持不變,得到一個新的圖象,記為圖形M,若圖形M與線段AB恰有兩個公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由題意直接可求A,根據(jù)平移點(diǎn)的特點(diǎn)求B;(2)圖形M與線段AB恰有兩個公共點(diǎn),y=a要在AB線段的上方,當(dāng)函數(shù)經(jīng)過點(diǎn)A時,AB與函數(shù)兩個交點(diǎn)的臨界點(diǎn);【詳解】解:(1)A(0,﹣3),B(4,﹣3);(2)當(dāng)函數(shù)經(jīng)過點(diǎn)A時,a=0,∵圖形M與線段AB恰有兩個公共點(diǎn),∴y=a要在AB線段的上方,∴a>﹣3∴﹣3<a≤0;【點(diǎn)睛】本題二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象的特點(diǎn),函數(shù)與線段相交的交點(diǎn)情況是解題的關(guān)鍵.9.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.【答案】(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點(diǎn)的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點(diǎn)D的坐標(biāo),利用交點(diǎn)式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點(diǎn)G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點(diǎn)P的坐標(biāo);同理可得其他圖形中點(diǎn)P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點(diǎn)為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點(diǎn)G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點(diǎn)P的坐標(biāo)是:(,)或(,)或(,)或(,).點(diǎn)睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運(yùn)用配方法,解第(3)問時需要運(yùn)用分類討論思想和方程的思想解決問題.10.如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形?若存在.請求出點(diǎn)P的坐標(biāo);(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到達(dá)點(diǎn)B時,點(diǎn)M、N同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.【答案】(1)二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時,△MNB面積最大,最大面積是1.此時點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達(dá)式;(2)先求出點(diǎn)B的坐標(biāo),再根據(jù)勾股定理求得BC的長,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點(diǎn)P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點(diǎn)M在D點(diǎn),點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點(diǎn)P在y軸上,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:如圖1,①當(dāng)CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當(dāng)PB=PC時,OP=OB=3,∴P3(0,-3);③當(dāng)BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時,△MNB面積最大,最大面積是1.此時點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.11.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.(1)求拋物線的解析式;(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個單位長度的速度向B點(diǎn)運(yùn)動,同時點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個單位長度的速度向C點(diǎn)運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也停止運(yùn)動,當(dāng)△PBQ存在時,求運(yùn)動多少秒使△PBQ的面積最大,最大面積是多少?(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點(diǎn)K,使S△CBK:S△PBQ=5:2,求K點(diǎn)坐標(biāo).【答案】(1)y=x2﹣x﹣3(2)運(yùn)動1秒使△PBQ的面積最大,最大面積是(3)K1(1,﹣),K2(3,﹣)【解析】【詳解】試題分析:(1)把點(diǎn)A、B的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b的解析式,通過解方程組求得它們的值;(2)設(shè)運(yùn)動時間為t秒.利用三角形的面積公式列出S△PBQ與t的函數(shù)關(guān)系式S△PBQ=﹣(t﹣1)2+.利用二次函數(shù)的圖象性質(zhì)進(jìn)行解答;(3)利用待定系數(shù)法求得直線BC的解析式為y=x﹣3.由二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可設(shè)點(diǎn)K的坐標(biāo)為(m,m2﹣m﹣3).如圖2,過點(diǎn)K作KE∥y軸,交BC于點(diǎn)E.結(jié)合已知條件和(2)中的結(jié)果求得S△CBK=.則根據(jù)圖形得到:S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m),把相關(guān)線段的長度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).解:(1)把點(diǎn)A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得,解得,所以該拋物線的解析式為:y=x2﹣x﹣3;(2)設(shè)運(yùn)動時間為t秒,則AP=3t,BQ=t.∴PB=6﹣3t.由題意得,點(diǎn)C的坐標(biāo)為(0,﹣3).在Rt△BOC中,BC==5.如圖1,過點(diǎn)Q作QH⊥AB于點(diǎn)H.∴QH∥CO,∴△BHQ∽△BOC,∴,即,∴HQ=t.∴S△PBQ=PB?HQ=(6﹣3t)?t=﹣t2+t=﹣(t﹣1)2+.當(dāng)△PBQ存在時,0<t<2∴當(dāng)t=1時,S△PBQ最大=.答:運(yùn)動1秒使△PBQ的面積最大,最大面積是;(3)設(shè)直線BC的解析式為y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直線BC的解析式為y=x﹣3.∵點(diǎn)K在拋物線上.∴設(shè)點(diǎn)K的坐標(biāo)為(m,m2﹣m﹣3).如圖2,過點(diǎn)K作KE∥y軸,交BC于點(diǎn)E.則點(diǎn)E的坐標(biāo)為(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.當(dāng)△PBQ的面積最大時,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m)=×4?EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解得m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).點(diǎn)評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有待定系數(shù)法求二次函數(shù)解析式和三角形的面積求法.在求有關(guān)動點(diǎn)問題時要注意該點(diǎn)的運(yùn)動范圍,即自變量的取值范圍.12.如圖,二次函數(shù)圖象的頂點(diǎn)為,對稱軸是直線,一次函數(shù)的圖象與軸交于點(diǎn),且與直線關(guān)于的對稱直線交于點(diǎn).(1)點(diǎn)的坐標(biāo)是______;(2)直線與直線交于點(diǎn),是線段上一點(diǎn)(不與點(diǎn)、重合),點(diǎn)的縱坐標(biāo)為.過點(diǎn)作直線與線段、分別交于點(diǎn),,使得與相似.①當(dāng)時,求的長;②若對于每一個確定的的值,有且只有一個與相似,請直接寫出的取值范圍______.【答案】(1);(2)①;②.【解析】【分析】(1)直接用頂點(diǎn)坐標(biāo)公式求即可;(2)由對稱軸可知點(diǎn)C(2,),A(-,0),點(diǎn)A關(guān)于對稱軸對稱的點(diǎn)(,0),借助AD的直線解析式求得B(5,3);①當(dāng)n=時,N(2,),可求DA=,DN=,CD=,當(dāng)PQ∥AB時,△DPQ∽△DAB,DP=9;當(dāng)PQ與AB不平行時,DP=9;②當(dāng)PQ∥AB,DB=DP時,DB=3,DN=,所以N(2,),則有且只有一個△DPQ與△DAB相似時,<n<.【詳解】(1)頂點(diǎn)為;故答案為;(2)對稱軸,,由已知可求,點(diǎn)關(guān)于對稱點(diǎn)為,則關(guān)于對稱的直線為,,①當(dāng)時,,,,當(dāng)時,,,,;當(dāng)與不平行時,,,,;綜上所述;②當(dāng),時,,,,,∴有且只有一個與相似時,;故答案為;【點(diǎn)睛】本題考查二次函數(shù)的圖象及性質(zhì),三角形的相似;熟練掌握二次函數(shù)的性質(zhì),三角形相似的判定與性質(zhì)是解題的關(guān)鍵.13.如圖①,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C.(1)求拋物線的表達(dá)式;(2)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動點(diǎn)D,連接DP、DQ.①若點(diǎn)P的橫坐標(biāo)為,求△DPQ面積的最大值,并求此時點(diǎn)D的坐標(biāo);②直尺在平移過程中,△DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請說明理由.【答案】(1)拋物線y=-x2+2x+3;(2)①點(diǎn)D();②△PQD面積的最大值為8【解析】分析:(1)根據(jù)點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)(I)由點(diǎn)P的橫坐標(biāo)可得出點(diǎn)P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達(dá)式,過點(diǎn)D作DE∥y軸交直線PQ于點(diǎn)E,設(shè)點(diǎn)D的坐標(biāo)為(x,-x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,-x+),進(jìn)而即可得出DE的長度,利用三角形的面積公式可得出S△DPQ=-2x2+6x+,再利用二次函數(shù)的性質(zhì)即可解決最值問題;(II)假設(shè)存在,設(shè)點(diǎn)P的橫坐標(biāo)為t,則點(diǎn)Q的橫坐標(biāo)為4+t,進(jìn)而可得出點(diǎn)P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達(dá)式,設(shè)點(diǎn)D的坐標(biāo)為(x,-x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,-2(t+1)x+t2+4t+3),進(jìn)而即可得出DE的長度,利用三角形的面積公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函數(shù)的性質(zhì)即可解決最值問題.詳解:(1)將A(-1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴拋物線的表達(dá)式為y=-x2+2x+3.(2)(I)當(dāng)點(diǎn)P的橫坐標(biāo)為-時,點(diǎn)Q的橫坐標(biāo)為,∴此時點(diǎn)P的坐標(biāo)為(-,),點(diǎn)Q的坐標(biāo)為(,-).設(shè)直線PQ的表達(dá)式為y=mx+n,將P(-,)、Q(,-)代入y=mx+n,得:,解得:,∴直線PQ的表達(dá)式為y=-x+.如圖②,過點(diǎn)D作DE∥y軸交直線PQ于點(diǎn)E,設(shè)點(diǎn)D的坐標(biāo)為(x,-x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,-x+),∴DE=-x2+2x+3-(-x+)=-x2+3x+,∴S△DPQ=DE?(xQ-xP)=-2x2+6x+=-2(x-)2+8.∵-2<0,∴當(dāng)x=時,△DPQ的面積取最大值,最大值為8,此時點(diǎn)D的坐標(biāo)為(,).(II)假設(shè)存在,設(shè)點(diǎn)P的橫坐標(biāo)為t,則點(diǎn)Q的橫坐標(biāo)為4+t,∴點(diǎn)P的坐標(biāo)為(t,-t2+2t+3),點(diǎn)Q的坐標(biāo)為(4+t,-(4+t)2+2(4+t)+3),利用待定系數(shù)法易知,直線PQ的表達(dá)式為y=-2(t+1)x+t2+4t+3.設(shè)點(diǎn)D的坐標(biāo)為(x,-x2+2x+3),則點(diǎn)E的坐標(biāo)為(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=DE?(xQ-xP)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴當(dāng)x=t+2時,△DPQ的面積取最大值,最大值為8.∴假設(shè)成立,即直尺在平移過程中,△DPQ面積有最大值,面積的最大值為8.點(diǎn)睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式;(2)(I)利用三角形的面積公式找出S△DPQ=-2x2+6x+;(II)利用三角形的面積公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.14.拋物線與x軸交于A,B兩點(diǎn)(OA<OB),與y軸交于點(diǎn)C.(1)求點(diǎn)A,B,C的坐標(biāo);(2)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,同時點(diǎn)E也從點(diǎn)O出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒(0<t<2).①過點(diǎn)E作x軸的平行線,與BC相交于點(diǎn)D(如圖所示),當(dāng)t為何值時,的值最小,求出這個最小值并寫出此時點(diǎn)E,P的坐標(biāo);②在滿足①的條件下,拋物線的對稱軸上是否存在點(diǎn)F,使△EFP為直角三角形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1時,有最小值1,此時OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】試題分析:(1)在拋物線的解析式中,令y=0,令x=0,解方程即可得到結(jié)果;(2)①由題意得:OP=2t,OE=t,通過△CDE∽△CBO得到,即,求得有最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品銷售顧問聘用合同
- 理發(fā)店等候區(qū)空調(diào)租賃合同
- 山西省港口設(shè)施施工合同范本
- 服裝品牌設(shè)計總監(jiān)聘用合同
- 廣播電視消防設(shè)施升級合同
- 遼寧省農(nóng)村公路養(yǎng)護(hù)手冊
- 2025版智慧城市建設(shè)企業(yè)股東變更與大數(shù)據(jù)應(yīng)用協(xié)議3篇
- 2025版物流配送中心智能化改造承包合同3篇
- 2024年物業(yè)小區(qū)增值服務(wù)管理合同3篇
- 2025版駕校與駕駛模擬器生產(chǎn)企業(yè)合作推廣協(xié)議3篇
- 北京市石景山區(qū)2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 2025版寒假特色作業(yè)
- Unit 7 Will people have robots Section B 1a-1e 教學(xué)實(shí)錄 2024-2025學(xué)年人教版英語八年級上冊
- 江西省吉安市2023-2024學(xué)年高一上學(xué)期1月期末考試政治試題(解析版)
- 國內(nèi)外航空安全形勢
- 《雷達(dá)原理》課件-1.1.6教學(xué)課件:雷達(dá)對抗與反對抗
- 2024年版汽車4S店商用物業(yè)租賃協(xié)議版B版
- 微信小程序云開發(fā)(赤峰應(yīng)用技術(shù)職業(yè)學(xué)院)知到智慧樹答案
- 遼寧省撫順市清原縣2024屆九年級上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(含解析)
- 2024-2025學(xué)年上學(xué)期福建高二物理期末卷2
- 2024四川阿壩州事業(yè)單位和州直機(jī)關(guān)招聘691人歷年管理單位遴選500模擬題附帶答案詳解
評論
0/150
提交評論