版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
講義09講:三角函數(shù)圖像與性質(zhì)【考點講義】1.正弦、余弦、正切函數(shù)的圖象與性質(zhì)(下表中k∈Z)函數(shù)y=sinxy=cosxy=tanx圖象定義域RReq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x≠kπ+\f(π,2)))))值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函數(shù)偶函數(shù)奇函數(shù)遞增區(qū)間eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ-\f(π,2),2kπ+\f(π,2)))[2kπ-π,2kπ]SKIPIF1<0遞減區(qū)間eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ+\f(π,2),2kπ+\f(3π,2)))[2kπ,2kπ+π]對稱中心(kπ,0)eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ+\f(π,2),0))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2),0))對稱軸方程x=kπ+eq\f(π,2)x=kπ2.簡諧運動的有關(guān)概念y=Asin(ωx+φ)(A>0,ω>0),x≥0振幅周期頻率相位初相AT=eq\f(2π,ω)f=eq\f(1,T)=eq\f(ω,2π)ωx+φφ3.用“五點法”畫y=Asin(ωx+φ)(A>0,ω>0)一個周期內(nèi)的簡圖時,要找五個特征點xeq\f(0-φ,ω)eq\f(\f(π,2)-φ,ω)eq\f(π-φ,ω)eq\f(\f(3π,2)-φ,ω)eq\f(2π-φ,ω)ωx+φ0eq\f(π,2)πeq\f(3π,2)2πy=Asin(ωx+φ)0A0-A04.函數(shù)y=sinx的圖象經(jīng)變換得到y(tǒng)=Asin(ωx+φ)(A>0,ω>0)的圖象的兩種途徑【方法技巧】1.求解三角函數(shù)的值域(最值)常見到以下幾種類型(1)形如y=asinx+bcosx+c的三角函數(shù)化為y=Asin(ωx+φ)+c的形式,再求值域(最值).求三角函數(shù)取最值時相應(yīng)自變量x的集合時,要注意考慮三角函數(shù)的周期性.(2)形如y=asin2x+bsinx+c(或y=acos2x+bcosx+c),x∈D的函數(shù)的值域或最值時,通過換元,令t=sinx(或cosx),將原函數(shù)轉(zhuǎn)化為關(guān)于t的二次函數(shù),利用配方法求值域或最值即可.求解過程中要注意t=sinx(或cosx)的有界性.(3)形如y=asinxcosx+b(sinx±cosx)+c的三角函數(shù),可先設(shè)t=sinx±cosx,化為關(guān)于t的二次函數(shù)求值域(最值).2.求三角函數(shù)周期的方法(1)定義法:即利用周期函數(shù)的定義求解.(2)公式法:對形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常數(shù),A≠0,ω≠0)的函數(shù),T=eq\f(2π,|ω|);對形如y=Atan(ωx+φ)(A,ω,φ是常數(shù),A≠0,ω≠0)的函數(shù),SKIPIF1<0.形如y=|Asinωx|(或y=|Acosωx|)的函數(shù)的周期T=eq\f(π,|ω|).(3)觀察法:即通過觀察函數(shù)圖象求其周期.3.三角函數(shù)周期性與奇偶性、對稱性的解題策略(1)探求三角函數(shù)的周期,常用方法是公式法,即將函數(shù)化為y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,再利用公式求解.(2)判斷函數(shù)y=Asin(ωx+φ)或y=Acos(ωx+φ)是否具備奇偶性,關(guān)鍵是看它能否通過誘導(dǎo)公式轉(zhuǎn)化為y=Asinωx(Aω≠0)或y=Acosωx(Aω≠0)其中的一個.(3)對于可化為f(x)=Asin(ωx+φ)(或f(x)=Acos(ωx+φ))形式的函數(shù),如果求f(x)的對稱軸,只需令ωx+φ=eq\f(π,2)+kπ(k∈Z)(或令ωx+φ=kπ(k∈Z)),求x即可;如果求f(x)的對稱中心的橫坐標(biāo),只需令ωx+φ=kπ(k∈Z)(或令ωx+φ=eq\f(π,2)+kπ(k∈Z)),求x即可.(4)對于可化為f(x)=Atan(ωx+φ)形式的函數(shù),如果求f(x)的對稱中心的橫坐標(biāo),只需令ωx+φ=eq\f(kπ,2)(k∈Z),求x即可.4.求函數(shù)y=tan(ωx+φ)的單調(diào)區(qū)間的方法y=tan(ωx+φ)(ω>0)的單調(diào)區(qū)間的求法是把ωx+φ看成一個整體,解-eq\f(π,2)+kπ<ωx+φ<eq\f(π,2)+kπ,k∈Z即可.當(dāng)ω<0時,先用誘導(dǎo)公式把ω化為正值再求單調(diào)區(qū)間.5.(1)由函數(shù)y=sinx的圖象通過變換得到y(tǒng)=Asin(ωx+φ)的圖象有兩條途徑:“先平移后伸縮”與“先伸縮后平移”.(2)當(dāng)x的系數(shù)不為1時,特別注意先提取系數(shù),再加減.(3)橫向伸縮變換,只變ω,而φ不發(fā)生變化.6.若設(shè)所求解析式為y=Asin(ωx+φ),則在觀察函數(shù)圖象的基礎(chǔ)上,可按以下規(guī)律來確定A,ω,φ.(1)由函數(shù)圖象上的最大值、最小值來確定|A|.(2)由函數(shù)圖象與x軸的交點確定T,由T=eq\f(2π,ω),確定ω.(3)y=Asin(ωx+φ)中φ的確定方法①代入法:把圖象上的一個已知點代入(此時A,ω已知)或代入圖象與x軸的交點求解(此時要注意交點在上升區(qū)間上還是在下降區(qū)間上),或把圖象的最高點或最低點代入.②五點對應(yīng)法:確定φ值時,往往以尋找“五點法”中的特殊點作為突破口.“五點”的ωx+φ的值具體如下:“第一點”(即圖象上升時與x軸的交點)為ωx+φ=0;“第二點”(即圖象的“峰點”)為ωx+φ=eq\f(π,2);“第三點”(即圖象下降時與x軸的交點)為ωx+φ=π;“第四點”(即圖象的“谷點”)為ωx+φ=eq\f(3π,2);“第五點”為ωx+φ=2π.【核心題型】題型一:整體代入法求三角函數(shù)的單調(diào)區(qū)間、對稱軸和對稱中心1.(2023春·河北·高二統(tǒng)考學(xué)業(yè)考試)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)輔助角公式,化簡三角函數(shù)式,結(jié)合正弦函數(shù)的圖像與性質(zhì),即可求得其單調(diào)遞增區(qū)間.【詳解】由輔助角公式,化簡三角函數(shù)式SKIPIF1<0可得SKIPIF1<0SKIPIF1<0由正弦函數(shù)的圖像與性質(zhì)可知其單調(diào)遞增區(qū)間滿足SKIPIF1<0解得SKIPIF1<0即單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0故選:B2.(2022秋·安徽·高三校聯(lián)考開學(xué)考試)函數(shù)SKIPIF1<0的圖象的一個對稱中心為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)正切型函數(shù)的對稱中心為SKIPIF1<0SKIPIF1<0,求解即可.【詳解】由SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0圖象的一個對稱中心,故選:D3.(2022秋·廣西欽州·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0且SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象的一條對稱軸是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】首先利用兩角差的余弦公式及同角三角函數(shù)的基本關(guān)系求出SKIPIF1<0的取值,再根據(jù)正弦函數(shù)的性質(zhì)計算可得.【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以函數(shù)的對稱軸為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故函數(shù)的一條對稱軸為SKIPIF1<0.故選:A題型二:代入檢驗法判斷三角函數(shù)的單調(diào)區(qū)間、對稱軸和對稱中心4.(2023春·河南·高三商丘市回民中學(xué)校聯(lián)考開學(xué)考試)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,下列說法正確的是(
).A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減C.SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0 D.點SKIPIF1<0是SKIPIF1<0圖象的一個對稱中心【答案】D【分析】由題意利用函數(shù)SKIPIF1<0的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì),即可求解.【詳解】由題知,SKIPIF1<0,所以A錯誤;因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上先增后減,所以B錯誤;因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以C錯誤;因為SKIPIF1<0,所以點SKIPIF1<0是SKIPIF1<0圖象的一個對稱中心,所以D正確.故選:D.5.(2022秋·天津河西·高三天津市海河中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,給出以下四個命題:①SKIPIF1<0的最小正周期為SKIPIF1<0;②SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0;③SKIPIF1<0的圖像關(guān)于點SKIPIF1<0中心對稱;④SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱.其中正確命題的個數(shù)是(
)A.1 B.2 C.3 D.4【答案】B【分析】由題知SKIPIF1<0,進而結(jié)合三角函數(shù)性質(zhì)依次討論各選項即可.【詳解】解:SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,①正確;當(dāng)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故②錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,故③錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,故④正確.故正確命題的個數(shù)是2個.故選:B6.(多選)(2022秋·山西晉中·高三校聯(lián)考階段練習(xí))關(guān)于函數(shù)SKIPIF1<0,下列說法正確的是(
)A.函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減B.函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0中心對稱C.函數(shù)SKIPIF1<0的對稱軸方程為SKIPIF1<0,SKIPIF1<0D.將SKIPIF1<0的圖像向右平移SKIPIF1<0個單位長度后,可以得到SKIPIF1<0的圖像【答案】ACD【分析】根據(jù)函數(shù)的解析式分別應(yīng)用對稱軸,對稱中心,單調(diào)性及平移逐個判斷選項即可.【詳解】對于A:SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故A正確;對于B:令SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0的對稱中心為SKIPIF1<0,故B錯誤;對于C:令SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,故C正確;對于D:將SKIPIF1<0的圖像向右平移SKIPIF1<0個單位長度可得SKIPIF1<0,故D正確.故選:ACD.題型三:圖像法求三角函數(shù)最值或值域7.(2021春·上海普陀·高一曹楊二中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的最小值是_________.【答案】SKIPIF1<0【分析】先將函數(shù)SKIPIF1<0轉(zhuǎn)化成正弦函數(shù)的形式,然后結(jié)合正弦函數(shù)的圖象判斷出函數(shù)SKIPIF1<0的最大值和最小值,從而得出結(jié)果.【詳解】解:由題意可得SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<08.(2022秋·北京·高三北京市八一中學(xué)??茧A段練習(xí))定義運算SKIPIF1<0例如,SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先閱讀理解題意,可得SKIPIF1<0,再作出函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象,再由圖像觀察值域即可.【詳解】根據(jù)題設(shè)中的新定義,得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0為周期函數(shù),周期為SKIPIF1<0,作出函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象(實線部分),觀察圖象,可知函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故選:D.9.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值.【答案】最大值為SKIPIF1<0+1,最小值為0.【分析】利用三角函數(shù)恒等變換轉(zhuǎn)化為正弦型三角函數(shù),根據(jù)自變量取值范圍,利用正弦函數(shù)圖象與性質(zhì)求最值即可得解.【詳解】因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.由正弦函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象與性質(zhì)知,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0取最大值SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0取最小值0.綜上,SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,最小值為0.題型四:換元法求三角函數(shù)最值或值域10.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的最大值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C【分析】利用換元法,令SKIPIF1<0,則原函數(shù)可化為SKIPIF1<0,再根據(jù)二次函數(shù)的性質(zhì)可求得其最大值【詳解】SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以原函數(shù)可化為SKIPIF1<0,SKIPIF1<0,對稱軸為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,所以函數(shù)的最大值為SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0,故選:C11.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的值域為________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,函數(shù)化為SKIPIF1<0,利用二次函數(shù)的性質(zhì)即可求出.【詳解】由于SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,于是函數(shù)化為SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時,函數(shù)取最大值1,當(dāng)SKIPIF1<0時,函數(shù)取最小值SKIPIF1<0,故值域為SKIPIF1<0.故答案為:SKIPIF1<0.12.(2022·全國·高三專題練習(xí))函數(shù)y=cos2x-sinx的值域是__________________【答案】SKIPIF1<0【分析】將原函數(shù)轉(zhuǎn)換成同名三角函數(shù)即可.【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時取最大值SKIPIF1<0,當(dāng)SKIPIF1<0時,取最小值SKIPIF1<0;故答案為:SKIPIF1<0.題型五:利用三角函數(shù)單調(diào)性、奇偶性、周期性和對稱性求參數(shù)的值13.(2023秋·廣西南寧·高三南寧二中校考期末)已知函數(shù)SKIPIF1<0的兩個相鄰的對稱中心的間距為SKIPIF1<0,現(xiàn)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到一個奇函數(shù),則SKIPIF1<0的一個可能取值為()A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.SKIPIF1<0【答案】D【分析】根據(jù)給定條件,求出函數(shù)的周期,進而求出SKIPIF1<0,再利用給定變換及奇函數(shù)求出SKIPIF1<0作答.【詳解】由于函數(shù)SKIPIF1<0的兩條相鄰的對稱軸的間距為SKIPIF1<0,該函數(shù)的最小正周期為π,即有SKIPIF1<0,則SKIPIF1<0,將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后,得到函數(shù)SKIPIF1<0,而函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,D正確,不存在整數(shù)k使得選項A,B,C成立.故選:D14.(2023·全國·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由題知SKIPIF1<0,進而根據(jù)題意得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,進而得SKIPIF1<0或SKIPIF1<0,再解不等式即可得答案.【詳解】解:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增等價于SKIPIF1<0或SKIPIF1<0,所以,解不等式得SKIPIF1<0或SKIPIF1<0,所以,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D15.(多選)(2023秋·黑龍江哈爾濱·高三哈爾濱市第六中學(xué)校??计谀┮阎瘮?shù)SKIPIF1<0SKIPIF1<0的最小正周期為SKIPIF1<0,函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,且滿足函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【分析】由周期為SKIPIF1<0,可得SKIPIF1<0.根據(jù)對稱軸SKIPIF1<0以及正弦函數(shù)的對稱性可得SKIPIF1<0或SKIPIF1<0.分別將SKIPIF1<0或SKIPIF1<0代入SKIPIF1<0,得出范圍,根據(jù)正弦函數(shù)的單調(diào)性即可得出SKIPIF1<0的值.【詳解】由已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,可得SKIPIF1<0.又函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,所以有SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,滿足題意;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,不滿足題意.所以,SKIPIF1<0.故選:CD.題型六:五點法求三角函數(shù)解析式16.(2020·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0的圖像大致如下圖,則f(x)的最小正周期為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由圖可得:函數(shù)圖象過點SKIPIF1<0,即可得到SKIPIF1<0,結(jié)合SKIPIF1<0是函數(shù)SKIPIF1<0圖象與SKIPIF1<0軸負半軸的第一個交點即可得到SKIPIF1<0,即可求得SKIPIF1<0,再利用三角函數(shù)周期公式即可得解.【詳解】由圖可得:函數(shù)圖象過點SKIPIF1<0,將它代入函數(shù)SKIPIF1<0可得:SKIPIF1<0又SKIPIF1<0是函數(shù)SKIPIF1<0圖象與SKIPIF1<0軸負半軸的第一個交點,所以SKIPIF1<0,解得:SKIPIF1<0所以函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0故選:C【點睛】本題主要考查了三角函數(shù)的性質(zhì)及轉(zhuǎn)化能力,還考查了三角函數(shù)周期公式,屬于中檔題.17.(2022·山西運城·校聯(lián)考模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的部分圖象如圖所示.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由圖像可求出函數(shù)的解析式SKIPIF1<0,由已知結(jié)合誘導(dǎo)公式知SKIPIF1<0,再利用二倍角公式可求解.【詳解】由圖可知,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:A18.(多選)(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的部分圖象如圖所示,則(
)A.SKIPIF1<0的最小正周期為SKIPIF1<0B.SKIPIF1<0為偶函數(shù)C.SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的最小值為1D.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱【答案】AC【分析】由圖知,SKIPIF1<0的最小正周期為SKIPIF1<0,結(jié)論A正確;求出SKIPIF1<0,從而SKIPIF1<0不是偶函數(shù),結(jié)論B錯誤;因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的最小值為1,結(jié)論C正確;因為SKIPIF1<0為SKIPIF1<0的零點,不是最值點,結(jié)論D錯誤.【詳解】解:由圖知,SKIPIF1<0的最小正周期為SKIPIF1<0,結(jié)論A正確;因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0為SKIPIF1<0在SKIPIF1<0內(nèi)的最小零點,則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0不是偶函數(shù),結(jié)論B錯誤;因為SKIPIF1<0,SKIPIF1<0,結(jié)合圖像可得SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的最小值為1,結(jié)論C正確;因為SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的零點,不是最值點,結(jié)論D錯誤.故選:AC.題型七:三角函數(shù)圖像的伸縮變換問題19.(2023·全國·高三專題練習(xí))為了得到函數(shù)SKIPIF1<0的圖象,只要把函數(shù)SKIPIF1<0圖象上所有的點(
)A.向左平移SKIPIF1<0個單位長度 B.向右平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度 D.向右平移SKIPIF1<0個單位長度【答案】D【分析】根據(jù)三角函數(shù)圖象的變換法則即可求出.【詳解】因為SKIPIF1<0,所以把函數(shù)SKIPIF1<0圖象上的所有點向右平移SKIPIF1<0個單位長度即可得到函數(shù)SKIPIF1<0的圖象.故選:D.
20.(2021·全國·統(tǒng)考高考真題)把函數(shù)SKIPIF1<0圖像上所有點的橫坐標(biāo)縮短到原來的SKIPIF1<0倍,縱坐標(biāo)不變,再把所得曲線向右平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖像,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】解法一:從函數(shù)SKIPIF1<0的圖象出發(fā),按照已知的變換順序,逐次變換,得到SKIPIF1<0,即得SKIPIF1<0,再利用換元思想求得SKIPIF1<0的解析表達式;解法二:從函數(shù)SKIPIF1<0出發(fā),逆向?qū)嵤└鞑阶儞Q,利用平移伸縮變換法則得到SKIPIF1<0的解析表達式.【詳解】解法一:函數(shù)SKIPIF1<0圖象上所有點的橫坐標(biāo)縮短到原來的SKIPIF1<0倍,縱坐標(biāo)不變,得到SKIPIF1<0的圖象,再把所得曲線向右平移SKIPIF1<0個單位長度,應(yīng)當(dāng)?shù)玫絊KIPIF1<0的圖象,根據(jù)已知得到了函數(shù)SKIPIF1<0的圖象,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;解法二:由已知的函數(shù)SKIPIF1<0逆向變換,第一步:向左平移SKIPIF1<0個單位長度,得到SKIPIF1<0的圖象,第二步:圖象上所有點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到SKIPIF1<0的圖象,即為SKIPIF1<0的圖象,所以SKIPIF1<0.故選:B.21.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0處有最小值,為了得到SKIPIF1<0的圖象,則只要將SKIPIF1<0的圖象(
)A.向右平移SKIPIF1<0個單位長度 B.向左平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度 D.向右平移SKIPIF1<0個單位長度【答案】C【分析】由題意可得SKIPIF1<0,結(jié)合SKIPIF1<0可得SKIPIF1<0的值,進而可得SKIPIF1<0的解析式,再由圖象的平移變換即可求解.【詳解】因為函數(shù)SKIPIF1<0在SKIPIF1<0處有最小值,所以SKIPIF1<0,可得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度可得SKIPIF1<0,故選:C.【高考必刷】一、單選題1.(2023春·安徽安慶·高一安徽省宿松中學(xué)校考開學(xué)考試)設(shè)函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱B.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱C.SKIPIF1<0是偶函數(shù)D.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增【答案】C【分析】對于A,求出函數(shù)的對稱軸,可知不存在SKIPIF1<0使得對稱軸為直線SKIPIF1<0,A錯誤;對于B,求出函數(shù)的對稱中心,可知不存在SKIPIF1<0使其一個對稱中心為SKIPIF1<0,B錯誤;對于C,由SKIPIF1<0求出SKIPIF1<0,利用誘導(dǎo)公式,結(jié)合偶函數(shù)的定義,可得C正確;對于D,當(dāng)SKIPIF1<0時,求出整體SKIPIF1<0的范圍,驗證SKIPIF1<0不是單調(diào)遞增,D錯誤.【詳解】由SKIPIF1<0解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,故A錯誤;由SKIPIF1<0解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的對稱中心為SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,故B錯誤;SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),C正確;令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0不是單調(diào)遞增函數(shù),故D錯誤.故選:C.2.(2022·高一課時練習(xí))函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先利用誘導(dǎo)公式將函數(shù)化簡為SKIPIF1<0,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故函數(shù)的單調(diào)遞增區(qū)間為SKIPIF1<0故選:D.3.(2021秋·云南昆明·高三昆明市第三中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,則函數(shù)SKIPIF1<0的圖像的一條對稱軸是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先由函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,求出SKIPIF1<0,再對SKIPIF1<0化簡即可求出.【詳解】函數(shù)SKIPIF1<0變?yōu)镾KIPIF1<0,(令SKIPIF1<0).因為函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0,解得:SKIPIF1<0.所以SKIPIF1<0.所以函數(shù)SKIPIF1<0,其中SKIPIF1<0,其對稱軸方程SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0符合題意.對照四個選項,D正確.故選:D.4.(2022秋·河南鄭州·高三統(tǒng)考期末)若將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,再將圖象上所有點的橫坐標(biāo)縮短到原來的SKIPIF1<0,得到函數(shù)SKIPIF1<0的圖象,則函數(shù)SKIPIF1<0圖象的對稱軸可能是(
)A.直線SKIPIF1<0 B.直線SKIPIF1<0C.直線SKIPIF1<0 D.直線SKIPIF1<0【答案】C【分析】利用輔助角公式將函數(shù)SKIPIF1<0化簡,再根據(jù)平移變換和周期變換的特征求出函數(shù)SKIPIF1<0的解析式,再根據(jù)正弦函數(shù)的對稱性即可得出答案.【詳解】解:由題得SKIPIF1<0,將SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,再將圖象上所有點的橫坐標(biāo)縮短到原來的SKIPIF1<0,得到函數(shù)SKIPIF1<0的圖象,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,得函數(shù)SKIPIF1<0圖象的一條對稱軸為直線SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0都不是函數(shù)的對稱軸.故選:C.5.(2022秋·河南洛陽·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的最大值為2,且對任意的SKIPIF1<0,SKIPIF1<0恒成立,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】根據(jù)函數(shù)的最值可得A=2,根據(jù)SKIPIF1<0恒成立可得SKIPIF1<0,由函數(shù)的單調(diào)性可得SKIPIF1<0,進而求得SKIPIF1<0,求出函數(shù)解析式,即可求解.【詳解】因為SKIPIF1<0的最大值為2,所以A=2,因為SKIPIF1<0恒成立,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,故選:B.6.(2023秋·江蘇泰州·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小正周期SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由已知可得SKIPIF1<0,解不等式求出SKIPIF1<0,再由周期公式求出SKIPIF1<0,最后由SKIPIF1<0可得答案.【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0.故選:D.7.(2023·甘肅·模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0的部分圖象如圖所示,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)圖像求出SKIPIF1<0,由SKIPIF1<0得到SKIPIF1<0,代入即可求解.【詳解】根據(jù)函數(shù)SKIPIF1<0的部分圖象,可得:A=1;因為SKIPIF1<0,SKIPIF1<0,結(jié)合五點法作圖可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.如果SKIPIF1<0,且SKIPIF1<0,結(jié)合SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:C.8.(2022秋·江蘇南通·高三校考期中)函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的部分圖象如圖所示,將SKIPIF1<0的圖象上所有點的橫坐標(biāo)擴大到原來的4倍(縱坐標(biāo)不變),再把所得的圖象沿SKIPIF1<0軸向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,則函數(shù)SKIPIF1<0的一個單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由函數(shù)的圖象的頂點坐標(biāo)求出A的值,由周期求出SKIPIF1<0的值,由五點法作圖求出SKIPIF1<0的值,可得函數(shù)SKIPIF1<0的解析式,結(jié)合圖象的變換規(guī)則,可得出SKIPIF1<0的解析式,再利用正弦函數(shù)的單調(diào)性即可求解.【詳解】根據(jù)函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的部分圖象,可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.結(jié)合五點法作圖可得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0的圖象上所有點的橫坐標(biāo)擴大到原來的4倍(縱坐標(biāo)不變),可得SKIPIF1<0的圖象.再把所得的圖象沿SKIPIF1<0軸向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象.令SKIPIF1<0,求得SKIPIF1<0,可得函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,可得一個增區(qū)間為SKIPIF1<0.故選:A.9.(2020秋·北京·高三北京八中??计谥校┮阎猄KIPIF1<0,SKIPIF1<0,直線SKIPIF1<0=SKIPIF1<0和SKIPIF1<0=SKIPIF1<0是函數(shù)SKIPIF1<0圖象的兩條相鄰的對稱軸,則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由于直線SKIPIF1<0=SKIPIF1<0和SKIPIF1<0=SKIPIF1<0是函數(shù)SKIPIF1<0圖像的兩條相鄰的對稱軸,所以可得SKIPIF1<0,從而可求出SKIPIF1<0,又由直線SKIPIF1<0=SKIPIF1<0為函數(shù)SKIPIF1<0圖象的對稱軸,可得SKIPIF1<0,從而可求出SKIPIF1<0的值【詳解】解:因為直線SKIPIF1<0=SKIPIF1<0和SKIPIF1<0=SKIPIF1<0是函數(shù)SKIPIF1<0圖像的兩條相鄰的對稱軸,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,因為直線SKIPIF1<0=SKIPIF1<0為函數(shù)SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0故選:A【點睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10.(2022·四川內(nèi)江·四川省內(nèi)江市第六中學(xué)??寄M預(yù)測)設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的單調(diào)減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0的對稱中心、零點求得SKIPIF1<0,進而求得SKIPIF1<0,結(jié)合三角函數(shù)單調(diào)區(qū)間的求法求得正確答案.【詳解】據(jù)題意可以得出直線SKIPIF1<0和點SKIPIF1<0分別是的圖象的一條對稱軸和一個對稱中心,所以SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0;又由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0在SKIPIF1<0上的單調(diào)減區(qū)間是SKIPIF1<0.故選:C11.(2022·全國·高三專題練習(xí))如圖,點SKIPIF1<0和點SKIPIF1<0分別是函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)圖像上的最低點和最高點,若SKIPIF1<0、SKIPIF1<0兩點間的距離為SKIPIF1<0,則關(guān)于函數(shù)SKIPIF1<0的說法正確的是(
)A.在區(qū)間SKIPIF1<0上單調(diào)遞增 B.在區(qū)間SKIPIF1<0上單調(diào)遞減C.在區(qū)間SKIPIF1<0上單調(diào)遞減 D.在區(qū)間SKIPIF1<0上單調(diào)遞增【答案】C【分析】首先利用二倍角公式將SKIPIF1<0化簡為SKIPIF1<0,再由SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的圖像上的最低點和最高點得到SKIPIF1<0,再由SKIPIF1<0,SKIPIF1<0兩點之間距離為SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年行政服務(wù)協(xié)議范本下載:詳盡條款版版B版
- 2024年股權(quán)擔(dān)保合同
- 2024年高檔會所食堂牛羊肉定制采購配送合同3篇
- 2024年跨境電子商務(wù)平臺建設(shè)標(biāo)前協(xié)議書
- 2024年規(guī)范化幼兒園租賃協(xié)議樣本版B版
- 2024年質(zhì)押借款合同正式樣本
- 2024年電影業(yè)演員勞務(wù)協(xié)議示例版B版
- 2024年食品生產(chǎn)加工合作協(xié)議
- 2024建筑施工合同標(biāo)的及工程進度安排
- 2024環(huán)保技術(shù)研發(fā)與污染治理服務(wù)合同
- 室外供水管網(wǎng)接駁施工方案
- 鋼結(jié)構(gòu)廊橋加立柱施工方案
- 《三國演義》中人物性格探析研究性課題報告
- 超常兒童的教育(特殊兒童教育課件)
- 新時代高職英語(基礎(chǔ)模塊)Unit1
- 注冊電氣工程師公共基礎(chǔ)高數(shù)輔導(dǎo)課件
- 民用無人駕駛航空器運行安全管理規(guī)則
- 車輛維修技術(shù)方案
- 中考古詩詞鑒賞情感篇(田霞)課件
- 卵巢癌診斷和治療課件
- 物業(yè)公司內(nèi)部承包協(xié)議(掛靠協(xié)議)
評論
0/150
提交評論