第三講數(shù)字介紹_第1頁
第三講數(shù)字介紹_第2頁
第三講數(shù)字介紹_第3頁
第三講數(shù)字介紹_第4頁
第三講數(shù)字介紹_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Lecture3

IntroductoryDigitalcontrolLecturer:Dr.NingyunLUDepartmentofAutomaticControlNUAA,2007E-mail:C031006:ModernDigitalControlOutlineIntroductorydigitalcontrolDigitization->Emulation(3.1,3.3)Effectofsampling(3.2)MoreaboutthesamplingprocessAliasing&anti-aliasingSamplingtheorem(Chap5,11)Continuousvs.digitalcontrolBasically,wewanttosimulatethecont.filterD(s),calledEmulation?GivenacontinuouscontrollerD(s),whatisitsbestdigitalapproximation?D(s)containsdifferentialequations(timedomain)–mustbetranslatedintodifferenceequations.Analogcontrolsystemctrl.filterD(s)plantG(s)sensor1r(t)u(t)y(t)e(t)+-continuouscontrollerForexample,PIDcontrolTisthesampletime(s),Sampledsignal:x(kT)=x(k)

control:differenceequationsD/Aandholdsensor1r(t)u(kT)u(t)e(kT)+-r(kT)plantG(s)y(t)clockA/DTTy(kT)digitalcontrollervoltage→bitbit→voltageDigitalControlSystemElementsofdigitalcontrol-1Sampler:convertacontinuous-timesignalintoadiscrete-timesignal.ThevaluesofthesignalaresampledrepetitivelyatregularinstanceT(samplingperiodT,samplingrate1/T,frequency2pi/T)(timediscrete)Samplesofcontinuoussignalareconvertedinto(binary)numbersforprocessinginsideadigitalcomputer.(valuediscrete)Impulsesamplingx(t)x*(k)T2TImpulse-sampledoutputisasequenceofimpulses,withthestrengthofeachimpulseequalthemagnitudeofx(t)atthecorrespondingtimekTDefineatrainofunitimpulsesasT2TModulatorcarrierElementsofdigitalcontrol-2D/AandholdDigital-to-Analog(D/A)converter,toconvertabinarynumberintoanalogvoltagesHold,toholdvoltagesintoacontinuous-timesignal.Zero-OrderHoldx(t)x*(k)Zero-Orderholdh1(t)ApproximationApproximateadifferentialequationbyadifferenceequationusingtechniquessuchasEuler’smethodElementsofdigitalcontrol-3DifferenceEquationusingEuler’smethodUsingEuler’smethod,findthedifferenceequations.DifferentialequationUsingEuler’smethodDifferenceequationDigitalPIDusingEuler’smethodSignificanceofsamplingtimeTCompare–investigateusingMatlab1) Closedloopstepresponsewithcontinuouscontroller.2) Closedloopstepresponsewithdiscretecontroller. Samplerate=20Hz3) Closedloopstepresponsewithdiscretecontroller. Samplerate=40HzExample:controllerD(s)andplantG(s)MatlabimplementationcontinuouscontrollernumD=70*[12];denD=[110];numG=1;denG=[110];sysOL=tf(numD,denD)*tf(numG,denG);sysCL=feedback(sysOL,1);step(sysCL);discretecontrollernumD=70*[12];denD=[110];sysDd=c2d(tf(numD,denD),T);numG=1;denG=[110];sysOL=sysDd*tf(numG,denG);sysCL=feedback(sysOL,1);step(sysCL);ControllerD(s)andplantG(s)StepresponseswithdifferentsamplingrateEffectofsamplingD/AinoutputfromcontrollerThesinglemostimportantimpactofimplementingacontroldigitallyisthedelayassociatedwiththehold.AnalysisonsampletimedelayApproximately1/2sampletimedelayCanbeapprox.byPadè (andcont.analysisasusual)ctrl.filterD(s)PadéP(s)sensor1r(t)u(t)y(t)e(t)+-plantG(s)MoreaboutthesamplingprocessConsiderthecontinuous-timesignal?Thecorrespondingdiscrete-timesignaliswhereisthenormalizeddigitalangularfrequencyofAliasing–anexample?Thethreecontinuous-timesignalsoffrequencies3Hz,7Hz,and13Hz,aresampledatasamplingrateof10Hz,i.e.withT=0.1sec.generatingthethreesequences?Plotsofthesesequences(shownwithcircles)andtheirparenttimefunctionsareshownbelow:NotethateachsequencehasexactlythesamesamplevalueforanygivenkWhy?ThisfactcanalsobeverifiedbyobservingthatAsaresult,allthreesequencesareidenticalanditisdifficulttoassociateauniquecontinuous-timefunctionwitheachofthesesequencesTheabovephenomenonofacontinuoustimesignalofhigherfrequencyacquiringtheidentityofasinusoidalsequenceoflowerfrequencyaftersamplingiscalledaliasing?Sincethereareaninfinitenumberofcontinuous-timesignalsthatcanleadtothesamesequencewhensampledperiodically,additionalconditionsneedtoimposedsothatthesequencecanuniquelyrepresenttheparentcontinuoustimesignalAnti-aliasing??RecallThusif ,thenthecorrespondingnormalizeddigitalangularfrequency ofthediscrete-timesignalobtainedbysamplingtheparentcontinuous-timesinusoidalsignalwillbeintherange

NoaliasingAnalysisAnalysis(cont.)Ontheotherhand,if ,thenormalizeddigitalangularfrequencywillfoldoverintoalowerdigitalfrequencyintherangebecauseofaliasingTopreventaliasing,thesamplingfrequency shouldbegreaterthan2timesthefrequency ofthesinusoidalsignalbeingsampledTheconditiontobesatisfiedbythesamplingfrequencytopreventaliasingiscalledthesamplingtheoremSamplingTheoremNyquistsamplingtheoremOnecanrecoverasignalfromitssamplesifthesamplingfrequencyfs=1/T(ws=2p/T)isatleasttwicethehighestfrequencyinthesignal,i.e.ws>2w0(closedloopband-width)Inpractice,weneed 20w0<ws<40w0

GraphicalExplanationofSamplingtheoremToshowthevalidityofthesamplingtheorem,wefirstshouldfindthefrequencyspectrumofthesampledsignalx*(t)x(t)x*(k)0ω1-ω1101/T01/T1010ω1-ω1101/T0ω1-ω11/TIdealLow-PassfilterX(s)X*(s)Y(s)X*(s)01/TFolding:Thephenomenonoftheoverlapinthefrequencyspectraisknownasfolding01/TSummaryDigitizationmethodsallowthedesignertoconvertacontinuouscompensationD(s)intoasetofdifferenceequationsthatcanbeprogrammeddirectlyintoacontrolcomputerEuler’smethodcanbeusedforthedigitizationWhenthesamplerateisfastenough(30*bandwidth),thedigitallycontrolledsystemwillbehaveclosetoits

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論