人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第14講 拓展二 基本不等式與對(duì)勾函數(shù)(含解析)_第1頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第14講 拓展二 基本不等式與對(duì)勾函數(shù)(含解析)_第2頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第14講 拓展二 基本不等式與對(duì)勾函數(shù)(含解析)_第3頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第14講 拓展二 基本不等式與對(duì)勾函數(shù)(含解析)_第4頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義第14講 拓展二 基本不等式與對(duì)勾函數(shù)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第07講拓展二基本不等式與對(duì)勾函數(shù)一、知識(shí)清單1、基本不等式常用技巧利用基本不等式求最值的變形技巧——湊、拆(分子次數(shù)高于分母次數(shù))、除(分子次數(shù)低于分母次數(shù))、代(1的代入)、解(整體解).①湊:湊項(xiàng),例:SKIPIF1<0;湊系數(shù),例:SKIPIF1<0;②拆:例:SKIPIF1<0;③除:例:SKIPIF1<0;④1的代入:例:已知SKIPIF1<0,求SKIPIF1<0的最小值.解析:SKIPIF1<0.⑤整體解:例:已知SKIPIF1<0,SKIPIF1<0是正數(shù),且SKIPIF1<0,求SKIPIF1<0的最小值.解析:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.2、對(duì)勾函數(shù)對(duì)勾函數(shù)是一種類(lèi)似于反比例函數(shù)的一般雙曲函數(shù),是形如:SKIPIF1<0(SKIPIF1<0)的函數(shù).由圖象得名,又被稱為:“雙勾函數(shù)”、“對(duì)號(hào)函數(shù)”、“雙飛燕函數(shù)”、“耐克函數(shù)”等.函數(shù)SKIPIF1<0(SKIPIF1<0)常考對(duì)勾函數(shù)SKIPIF1<0(SKIPIF1<0)定義域SKIPIF1<0定義域SKIPIF1<0值域SKIPIF1<0值域SKIPIF1<0奇偶性奇函數(shù)奇偶性奇函數(shù)單調(diào)性SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0,SKIPIF1<0單調(diào)遞減單調(diào)性SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0,SKIPIF1<0單調(diào)遞減二、題型精講題型01直接法【典例1】(2023·高一課時(shí)練習(xí))函數(shù)SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.3 D.4【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,即函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,故選:B.【典例2】(2023春·安徽六安·高一??计谥校┤鬝KIPIF1<0,則SKIPIF1<0(

)A.有最小值SKIPIF1<0 B.有最大值SKIPIF1<0C.有最小值2 D.有最大值2【答案】B【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即:SKIPIF1<0時(shí)取等號(hào).所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).故選:B.【典例3】(2023·湖南長(zhǎng)沙·高二長(zhǎng)郡中學(xué)校考學(xué)業(yè)考試)代數(shù)式SKIPIF1<0取得最小值時(shí)對(duì)應(yīng)的SKIPIF1<0值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0在分母的位置,則SKIPIF1<0.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),取等號(hào),故選:D.【變式1】(2023秋·福建·高二統(tǒng)考學(xué)業(yè)考試)已知SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.2 B.3 C.4 D.5【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式2】(2023春·福建福州·高二福建省福州延安中學(xué)??紝W(xué)業(yè)考試)函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.2 C.2SKIPIF1<0 D.4【答案】D【詳解】∵SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故函數(shù)SKIPIF1<0的最小值為4.故選:D.題型02湊配法【典例1】(2023·高一課時(shí)練習(xí))若SKIPIF1<0,則SKIPIF1<0的最值情況是(

)A.有最大值SKIPIF1<0 B.有最小值6 C.有最大值SKIPIF1<0 D.有最小值2【答案】B【詳解】若SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號(hào)成立,所以若SKIPIF1<0時(shí),SKIPIF1<0有最小值為6,無(wú)最大值.故選:B.【典例2】(2023·安徽安慶·安慶一中校考三模)已知非負(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】4【詳解】由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).故答案為:4【典例3】(2023·高一課時(shí)練習(xí))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則a的取值范圍是__________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0可得SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023春·內(nèi)蒙古呼倫貝爾·高一??奸_(kāi)學(xué)考試)若SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(

)A.3 B.4 C.5 D.6【答案】D【詳解】由題意可得:SKIPIF1<0,∵SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故選:D.【變式2】(2023春·山東德州·高二??茧A段練習(xí))已知正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_________.【答案】SKIPIF1<0/1.125【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0最取到等號(hào).故答案為:SKIPIF1<0.題型03分離法【典例1】(2023春·江蘇泰州·高二泰州中學(xué)??茧A段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值是A.2 B.3 C.4 D.5【答案】D【詳解】由題意知,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取“=”)故SKIPIF1<0的最小值是5.故答案為D.【典例2】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最大值為_(kāi)_______.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0≤SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以函數(shù)SKIPIF1<0的最小值是SKIPIF1<0故答案為:SKIPIF1<0.【變式1】(2022·江蘇·高一專題練習(xí))當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.4【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故選:B.【變式2】(2022秋·河北滄州·高一任丘市第一中學(xué)校考期中)解答下列問(wèn)題:(1)已知SKIPIF1<0,求函數(shù)SKIPIF1<0的最小值;(2)已知SKIPIF1<0,求函數(shù)SKIPIF1<0最小值.【答案】(1)10;(2)9.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以函數(shù)SKIPIF1<0的最小值為SKIPIF1<0(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.所以函數(shù)SKIPIF1<0的最小值為9.題型04換元法【典例1】(2023春·重慶沙坪壩·高二重慶一中校考期中)已知SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.于是SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0時(shí),SKIPIF1<0取到最小值SKIPIF1<0.故選:C【典例2】(2023·全國(guó)·高三專題練習(xí))若實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)_______.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0.則SKIPIF1<0,從而SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),即最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023·江蘇·高一專題練習(xí))求下列函數(shù)的最小值(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)3;(2)SKIPIF1<0;(3)10.【詳解】(1)SKIPIF1<0∵SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即x=1時(shí)取“=”)即SKIPIF1<0的最小值為3;(2)令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0是單增,∴當(dāng)t=2時(shí),y取最小值SKIPIF1<0;即y的最小值為SKIPIF1<0(3)令SKIPIF1<0,則SKIPIF1<0可化為:SKIPIF1<0當(dāng)且僅當(dāng)t=3時(shí)取“=”即y的最小值為10【變式1】(2023·全國(guó)·高三專題練習(xí))當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為_(kāi)_______.【答案】3【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0得SKIPIF1<0,而函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),因此SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,故答案為:SKIPIF1<0.【變式2】(2023·全國(guó)·高三專題練習(xí))(1)求函數(shù)SKIPIF1<0的最小值及此時(shí)SKIPIF1<0的值;(2)已知函數(shù)SKIPIF1<0,SKIPIF1<0,求此函數(shù)的最小值及此時(shí)SKIPIF1<0的值.【答案】(1)函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0;(2)函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立.故函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0;(2)令SKIPIF1<0,將SKIPIF1<0代入得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0.題型05常數(shù)代換“1”的代換【典例1】(2023·高一單元測(cè)試)設(shè)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·遼寧遼陽(yáng)·統(tǒng)考二模)若SKIPIF1<0,則SKIPIF1<0的值可以是__________.【答案】5(答案不唯一,只要不小于SKIPIF1<0即可)【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,則SKIPIF1<0.【典例3】(2023秋·重慶長(zhǎng)壽·高一統(tǒng)考期末)已知正數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_________.【答案】SKIPIF1<0【詳解】由正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例4】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】2【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023春·浙江·高二統(tǒng)考學(xué)業(yè)考試)正實(shí)數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.3 B.7 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,由于SKIPIF1<0為正數(shù),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故選:C【變式2】(2023·山東日照·三模)設(shè)SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取得最小值.故答案為:SKIPIF1<0.故答案為:5(答案不唯一,只要不小于SKIPIF1<0即可)【變式3】(2023春·廣東汕頭·高一金山中學(xué)校考期中)已知正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)檎龑?shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0【變式4】(2023春·吉林長(zhǎng)春·高二校考期中)已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)______.【答案】SKIPIF1<0【詳解】因?yàn)檎龜?shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.題型06消元法【典例1】(2023·全國(guó)·高三專題練習(xí))若正實(shí)數(shù)x,y滿足x+2y+xy=7,則x+y的最小值為(

)A.6 B.5 C.4 D.3【答案】D【詳解】因?yàn)閤+2y+xy=7,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即x=1,y=2時(shí),等號(hào)成立,所以x+y的最小值為3.故選:D【典例2】(2023·全國(guó)·高三專題練習(xí))已知正實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值是SKIPIF1<0.故選:A.【變式1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.2SKIPIF1<0 D.2SKIPIF1<0【答案】D【詳解】由SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,則有SKIPIF1<0,因此,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取“=”,所以SKIPIF1<0的最小值為2SKIPIF1<0.故選:D【變式2】(2023·全國(guó)·高三專題練習(xí))已知正實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值是()A.2 B.SKIPIF1<0 C.SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論