版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用章末檢測卷(一)說明:1.本試題共4頁,滿分150分,考試時間120分鐘。2.答題前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自己的姓名、試室號、座位號填寫在答題卷上。3.答題必須使用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卷上各題目指定區(qū)域內(nèi)的相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答的答案無效。4.考生必須保持答題卷整潔,考試結(jié)束后,將答題卷交回,試卷自己保存。第I卷(選擇題共60分)一、單項選擇題(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求.)1.(2023秋·山西運城·高二康杰中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】B【分析】先求SKIPIF1<0,再求SKIPIF1<0的值.【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:B.2.(2023秋·山東臨沂·高二校考期末)已知曲線SKIPIF1<0上一點SKIPIF1<0,在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)導(dǎo)數(shù)的幾何意義可求出結(jié)果.【詳解】由SKIPIF1<0得SKIPIF1<0,則切線的斜率為SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故選:A3.(2023秋·廣東廣州·高二西關(guān)外國語學(xué)校??计谀┖瘮?shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則實數(shù)a的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】C【分析】根據(jù)給定條件,求出函數(shù)SKIPIF1<0的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義結(jié)合垂直條件求解作答.【詳解】函數(shù)SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,則SKIPIF1<0,即函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線斜率為SKIPIF1<0,因為切線與直線SKIPIF1<0垂直,有SKIPIF1<0.所以SKIPIF1<0.故選:C4.(2023秋·山西太原·高二??计谀┮阎x在SKIPIF1<0上的函數(shù)SKIPIF1<0的圖象如圖,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)函數(shù)圖象得到單調(diào)性,從而確定不等式SKIPIF1<0的解集.【詳解】由圖象可知:SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故等式SKIPIF1<0的解集為SKIPIF1<0.故選:B5.(2023秋·江蘇蘇州·高二常熟中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,然后構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即得.【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,對于函數(shù)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.故選:B.6.(2023秋·安徽阜陽·高二安徽省潁上第一中學(xué)??计谀┖瘮?shù)SKIPIF1<0的增區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求導(dǎo),利用導(dǎo)數(shù)判斷原函數(shù)的單調(diào)性,注意原函數(shù)的定義域.【詳解】由題意可知:函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,且SKIPIF1<0,∴函數(shù)SKIPIF1<0的增區(qū)間是SKIPIF1<0.故選:D.7.(2023秋·山西太原·高二??计谀┲本€SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的值為(
)A.2 B.-2 C.-1 D.1【答案】D【分析】求出SKIPIF1<0,設(shè)切點SKIPIF1<0,由SKIPIF1<0求出SKIPIF1<0,代入SKIPIF1<0可得答案.【詳解】SKIPIF1<0,設(shè)切點SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0.故選:D.8.(2023秋·江蘇揚州·高二江蘇省江都中學(xué)??计谀┮阎猄KIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),且對于任意實數(shù)SKIPIF1<0都有SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】本題解題關(guān)鍵在于根據(jù)已知構(gòu)造出合適的函數(shù),SKIPIF1<0,再通過逆用求導(dǎo)公式得到SKIPIF1<0,根據(jù)已知條件求得m的值,從而將抽象不等式轉(zhuǎn)化為一元二次不等式,進(jìn)而得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,亦即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0.原不等式SKIPIF1<0可等價于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.二、多項選擇題(本題共4小題,每小題5分,共20分.在每小題給出的四個選項中,有多項符合題目要求。全部選對的得5分,部分選對的得2分,有選錯的得0分)9.(2023秋·重慶沙坪壩·高二重慶南開中學(xué)??计谀┤鐖D是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)的圖象,對于下列四個判斷,其中正確的是(
)A.SKIPIF1<0在SKIPIF1<0上是增函數(shù)B.SKIPIF1<0在SKIPIF1<0上是減函數(shù)C.當(dāng)SKIPIF1<0時,SKIPIF1<0取得極小值D.當(dāng)SKIPIF1<0時,SKIPIF1<0取得極大值【答案】BC【分析】根據(jù)導(dǎo)數(shù)與原函數(shù)關(guān)系解決.【詳解】從導(dǎo)函數(shù)圖像可以看出函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)減函數(shù);SKIPIF1<0在SKIPIF1<0上為增函數(shù),故A錯B對,C對D錯.故選:BC10.(2023秋·重慶沙坪壩·高二重慶一中??计谀┮阎瘮?shù)SKIPIF1<0,則(
)A.函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增B.函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個零點C.對SKIPIF1<0恒有SKIPIF1<0,則整數(shù)SKIPIF1<0的最大值為SKIPIF1<0D.若SKIPIF1<0,則有SKIPIF1<0【答案】ABD【分析】根據(jù)給定條件,求出函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,再求出SKIPIF1<0的導(dǎo)數(shù),推導(dǎo)SKIPIF1<0正負(fù)判斷A;結(jié)合零點存在性定理推理判斷B;利用導(dǎo)數(shù)探討最值判斷C;利用導(dǎo)數(shù)證明不等式判斷D作答.【詳解】函數(shù)SKIPIF1<0,求導(dǎo)得SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,對于A,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,A正確;對于B,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,則SKIPIF1<0使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,由選項A知,SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,則SKIPIF1<0,使得SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個零點,B正確;對于C,對SKIPIF1<0恒有SKIPIF1<0,由選項B知,SKIPIF1<0,則有SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,又SKIPIF1<0,則有SKIPIF1<0,因此整數(shù)SKIPIF1<0的最大值為SKIPIF1<0,C不正確;對于D,當(dāng)SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則有函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因此SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0成立,D正確.故選:ABD【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用導(dǎo)數(shù)探求函數(shù)單調(diào)性、最值是解決問題的關(guān)鍵.11.(2023秋·重慶沙坪壩·高二重慶一中校考期末)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0軸 B.SKIPIF1<0是SKIPIF1<0上的減函數(shù)C.SKIPIF1<0為SKIPIF1<0的極值點 D.SKIPIF1<0最小值為0【答案】ACD【分析】求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可判斷A;結(jié)合函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,判斷B;根據(jù)導(dǎo)數(shù)的正負(fù)與函數(shù)極值的關(guān)系,判斷C,繼而判斷D.【詳解】由題意知SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處的切線的斜率為SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0軸,A正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,B錯誤;由此可得SKIPIF1<0為SKIPIF1<0的極小值點,C正確;由于在SKIPIF1<0上SKIPIF1<0只有一個極小值點,故函數(shù)的極小值也為函數(shù)的最小值,最小值為SKIPIF1<0,D正確,故選:SKIPIF1<012.(2023秋·山東菏澤·高二山東省鄄城縣第一中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0的兩個極值點分別是SKIPIF1<0,則(
)A.SKIPIF1<0或SKIPIF1<0B.SKIPIF1<0C.存在實數(shù)SKIPIF1<0,使得SKIPIF1<0D.SKIPIF1<0【答案】BD【分析】對于A,由題意可得SKIPIF1<0在SKIPIF1<0上有2個不等的實根,從而可求出SKIPIF1<0的范圍,對于B,根據(jù)根與系數(shù)的關(guān)系結(jié)合SKIPIF1<0的范圍進(jìn)行判斷,對于C,由題意得SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)可求得SKIPIF1<0,從而可進(jìn)行判斷,對于D,SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)可求出其在SKIPIF1<0上的最大值小于零即可.【詳解】由SKIPIF1<0有兩個極值點SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上有2個不等的實根,即SKIPIF1<0在SKIPIF1<0上有2個不等的實根,則SKIPIF1<0解得SKIPIF1<0,A錯誤;由韋達(dá)定理,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,B正確;SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0恒成立,C錯誤;SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0.所以SKIPIF1<0,D正確.故選:BD.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)解決函數(shù)極值問題,解題的關(guān)鍵是根據(jù)題意可得SKIPIF1<0在SKIPIF1<0上有2個不等的實根,即SKIPIF1<0在SKIPIF1<0上有2個不等的實根,然后利用根與系數(shù)的關(guān)系分析判斷,考查數(shù)學(xué)計算能力,屬于較難題.第Ⅱ卷(非選擇題共90分)三、填空題(本題共4小題,每小題5分,共20分)13.(2023秋·山西呂梁·高二統(tǒng)考期末)函數(shù)SKIPIF1<0的極值點為______.【答案】SKIPIF1<0【分析】利用導(dǎo)數(shù)求SKIPIF1<0的極值點.【詳解】由題設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞增;所以SKIPIF1<0由極小值點為SKIPIF1<0,無極大值點.故答案為:SKIPIF1<014.(2023秋·湖南岳陽·高二統(tǒng)考期末)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上有根,則實數(shù)m的取值范圍是_____.【答案】SKIPIF1<0.【詳解】問題化為SKIPIF1<0在SKIPIF1<0上有根,令SKIPIF1<0,由導(dǎo)數(shù)求得SKIPIF1<0在SKIPIF1<0上的值域即得.【解答】若關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上有根,即SKIPIF1<0在SKIPIF1<0上有根,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,若使SKIPIF1<0在SKIPIF1<0上有根,則SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023秋·江蘇鹽城·高二鹽城中學(xué)校考期末)若SKIPIF1<0是直線SKIPIF1<0上的一點,點SKIPIF1<0是曲線SKIPIF1<0上的一點,則SKIPIF1<0的最小值為________.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,利用點到直線的距離可得SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)求出SKIPIF1<0,即可得到答案【詳解】因為點SKIPIF1<0是曲線SKIPIF1<0上的一點,故設(shè)SKIPIF1<0,所以SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0單調(diào)遞減;所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0的最小值為SKIPIF1<0故答案為:SKIPIF1<016.(2023秋·山東菏澤·高二山東省鄄城縣第一中學(xué)??计谀┤羟€SKIPIF1<0與曲線SKIPIF1<0在公共點處有相同的切線,則實數(shù)SKIPIF1<0__________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,SKIPIF1<0,公共點為SKIPIF1<0,結(jié)合導(dǎo)數(shù)幾何意義可構(gòu)造方程組SKIPIF1<0,由此可解得SKIPIF1<0,進(jìn)而求得SKIPIF1<0的值.【詳解】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0與SKIPIF1<0的公共點為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0在公動點處有相同的切線,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題(本題共6個小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟)17.(2023秋·山東濰坊·高二統(tǒng)考期末)已知SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,求實數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間;【答案】(1)SKIPIF1<0(2)答案見解析【分析】(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)SKIPIF1<0,求出SKIPIF1<0的值,檢驗即可;(2)求出SKIPIF1<0的導(dǎo)數(shù),通過討論SKIPIF1<0的范圍,求出函數(shù)的單調(diào)遞增區(qū)間即可;【詳解】(1)解:因為SKIPIF1<0,所以SKIPIF1<0,依題意SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在SKIPIF1<0處取得極小值,符合題意,所以SKIPIF1<0.(2)解:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,令SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,令SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;綜上可得:當(dāng)SKIPIF1<0時單調(diào)遞增區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0時單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時單調(diào)遞增區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0時單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0.18.(2023秋·江蘇鹽城·高二校考期末)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有且只有一個零點,求實數(shù)SKIPIF1<0的取值范圍;【答案】(1)答案見解析;(2)SKIPIF1<0.【分析】(1)由導(dǎo)數(shù)法即可求;(2)分別討論SKIPIF1<0,由SKIPIF1<0的單調(diào)性及零點存在定理判斷零點即可.【詳解】(1)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上是增函數(shù);SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0是減函數(shù),SKIPIF1<0時,SKIPIF1<0是增函數(shù),綜上,SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是減函數(shù),在SKIPIF1<0上是增函數(shù);(2)i.SKIPIF1<0時,由(1)得SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0,故SKIPIF1<0只有一個零點;ii.SKIPIF1<0時,由(1)得SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0只有一個零點,符合題意;②當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0有一個零點,又SKIPIF1<0在SKIPIF1<0上是增函數(shù),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0知,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0有一個零點,不合題意;③當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0有一個零點,又SKIPIF1<0在SKIPIF1<0上是減函數(shù),SKIPIF1<0,由②得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0有一個零點,不合題意.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.【點睛】方法點睛:1.零點個數(shù)可根據(jù)函數(shù)單調(diào)性及零點存在定理判斷;2.對于含參函數(shù),難點在于找到合適的自變量滿足零點存在定理,本題中可根據(jù)函數(shù)形式,構(gòu)造函數(shù)說明SKIPIF1<0時,SKIPIF1<0及SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0及SKIPIF1<0.19.(2023秋·北京·高二清華附中校考期末)已知函數(shù)SKIPIF1<0(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)求曲線SKIPIF1<0與直線SKIPIF1<0的公共點個數(shù),并說明理由;(3)若對于任意SKIPIF1<0,不等式SKIPIF1<0恒成立,直接寫出實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)曲線SKIPIF1<0與直線SKIPIF1<0的公共點只有一個,證明見解析(3)實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義,求切點坐標(biāo)與切線斜率即可得曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,確定函數(shù)SKIPIF1<0的單調(diào)性與取值情況,從而可得SKIPIF1<0的根的個數(shù),即可得曲線SKIPIF1<0與直線SKIPIF1<0的公共點個數(shù);(3)直線SKIPIF1<0定點SKIPIF1<0作曲線SKIPIF1<0的切線,設(shè)切點為SKIPIF1<0,通過導(dǎo)數(shù)的幾何意義結(jié)合函數(shù)單調(diào)性與取值情況無法解出SKIPIF1<0,則直線SKIPIF1<0不與曲線SKIPIF1<0相切,結(jié)合曲線SKIPIF1<0的圖象分析直線SKIPIF1<0與其交點情況即可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】(1)解:函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0切線方程是:SKIPIF1<0,故切線方程為:SKIPIF1<0;(2)解:曲線SKIPIF1<0與直線SKIPIF1<0的公共點只有一個,理由如下:設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;則SKIPIF1<0,故SKIPIF1<0,有且只有一個根SKIPIF1<0,即SKIPIF1<0有且只有一個根SKIPIF1<0,故曲線SKIPIF1<0與直線SKIPIF1<0的公共點只有一個.(3)解:若對于任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0又直線SKIPIF1<0過定點SKIPIF1<0,則過點SKIPIF1<0作曲線SKIPIF1<0的切線,設(shè)切點為SKIPIF1<0,則斜率SKIPIF1<0,則切線方程為SKIPIF1<0,將SKIPIF1<0代入得:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以關(guān)于SKIPIF1<0的方程SKIPIF1<0無解,則說明過點SKIPIF1<0的切線不存在,則直線SKIPIF1<0不與曲線SKIPIF1<0相切,又函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,又SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,則可得SKIPIF1<0的大致圖象如下:根據(jù)上述結(jié)論結(jié)合函數(shù)圖象可知當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0無交點,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0總有交點,從而要使對于任意SKIPIF1<0,不等式SKIPIF1<0恒成立,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.20.(2023秋·重慶沙坪壩·高二重慶一中??计谀┮阎瘮?shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實數(shù)SKIPIF1<0的取值范圍;(2)若SKIPIF1<0存在極小值,且極小值等于SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【分析】(1)由條件可得SKIPIF1<0在SKIPIF1<0上恒成立,然后可得SKIPIF1<0,然后利用導(dǎo)數(shù)求出SKIPIF1<0的最大值即可;(2)求出SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四種情況討論SKIPIF1<0的單調(diào)性,然后可得SKIPIF1<0,令SKIPIF1<0、SKIPIF1<0,然后利用SKIPIF1<0、SKIPIF1<0的單調(diào)性可證明.【詳解】(1)因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,且SKIPIF1<0不恒等于SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0;(2)因為SKIPIF1<0,其定義域為SKIPIF1<0,所以SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的極小值為SKIPIF1<0,而SKIPIF1<0,不合題意,②當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的極小值為SKIPIF1<0,而SKIPIF1<0,不合題意,③當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,不合題意,④當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的極小值為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時有SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.21.(2023秋·安徽阜陽·高二安徽省潁上第一中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0(SKIPIF1<0).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若方程SKIPIF1<0有兩個不相等的實數(shù)根SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)見解析.(2)見解析.【分析】(1)求出SKIPIF1<0的導(dǎo)數(shù),通過討論SKIPIF1<0的范圍,判斷SKIPIF1<0的符號,得到函數(shù)的單調(diào)區(qū)間即可.(2)根據(jù)SKIPIF1<0不單調(diào),令SKIPIF1<0,令SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電腦棋手》課件
- 《遠(yuǎn)山如黛》少兒美術(shù)教育繪畫課件創(chuàng)意教程教案
- 課程分享 課件
- 西南林業(yè)大學(xué)《比較文學(xué)概論》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《網(wǎng)絡(luò)數(shù)據(jù)庫》2021-2022學(xué)年期末試卷
- 西京學(xué)院《建筑設(shè)備》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年教師系列中高級職稱評審有關(guān)政策解讀附件10
- 西京學(xué)院《國際結(jié)算與貿(mào)易融資》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《單片機原理及應(yīng)用》2022-2023學(xué)年期末試卷
- 西華師范大學(xué)《中小學(xué)綜合實踐活動》2023-2024學(xué)年第一學(xué)期期末試卷
- 大數(shù)據(jù)行業(yè)分析報告
- (5篇)國開2024年秋形策大作業(yè):中華民族現(xiàn)代文明有哪些鮮明特質(zhì)?建設(shè)中華民族現(xiàn)代文明的路徑是什么
- 錯牙合畸形的早期矯治(口腔正畸學(xué)課件)
- 江蘇省徐州市沛縣第五中學(xué)2024-2025學(xué)年九年級上學(xué)期11月期中考試數(shù)學(xué)試題
- 2024年中國酶免試劑市場調(diào)查研究報告
- GB/T 44578-2024熱塑性塑料隔膜閥
- 安全生產(chǎn)三個體系
- 華潤雙鶴財務(wù)報表分析報告
- 蘇科版(2024新版)七年級上冊數(shù)學(xué)期中培優(yōu)測試卷(含答案解析)
- 研發(fā)物料管理制度
- 2024年中國木材鏈?zhǔn)袌稣{(diào)查研究報告
評論
0/150
提交評論