




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省溫嶺市達標名校2024屆中考數(shù)學(xué)模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形2.如果(,均為非零向量),那么下列結(jié)論錯誤的是()A.// B.-2=0 C.= D.3.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)4.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉(zhuǎn)90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)5.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<06.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n7.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.168.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)9.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.10.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐二、填空題(共7小題,每小題3分,滿分21分)11.四張背面完全相同的卡片上分別寫有0、、、、四個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數(shù)的概率為___________.12.不等式組的解集是_____;13.關(guān)于的分式方程的解為正數(shù),則的取值范圍是___________.14.若式子有意義,則實數(shù)x的取值范圍是_______.15.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯(lián)結(jié)PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.16.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.17.如圖,在△ABC和△EDB中,∠C=∠EBD=90°,點E在AB上.若△ABC≌△EDB,AC=4,BC=3,則AE=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數(shù)與反比例函數(shù)的表達式;當(dāng)x>0時,比較kx+b與的大?。?9.(5分)計算:sin30°?tan60°+..20.(8分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O(shè)為圓心,以O(shè)A為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.21.(10分)關(guān)于的一元二次方程.求證:方程總有兩個實數(shù)根;若方程有一根小于1,求的取值范圍.22.(10分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?23.(12分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關(guān)系式;根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?24.(14分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【題目詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【題目點撥】本題考查了命題與定理的知識,解題的關(guān)鍵是能夠了解矩形和菱形的判定定理,難度不大.2、B【解題分析】試題解析:向量最后的差應(yīng)該還是向量.故錯誤.故選B.3、A【解題分析】
根據(jù)絕對值的性質(zhì)進行求解即可得.【題目詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【題目點撥】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關(guān)鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.4、A【解題分析】
分順時針旋轉(zhuǎn),逆時針旋轉(zhuǎn)兩種情形求解即可.【題目詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【題目點撥】本題考查坐標與圖形變換——旋轉(zhuǎn),解題的關(guān)鍵是利用空間想象能力.5、B【解題分析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.6、C【解題分析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關(guān)系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當(dāng)時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠的點,對應(yīng)的函數(shù)值越大,7、B【解題分析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故選C.“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.8、D【解題分析】
解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【題目詳解】由圖知A點的坐標為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標為(1,3).故選D.9、C【解題分析】
先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據(jù)相似三角形對應(yīng)邊成比例列式求解即可.【題目詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【題目點撥】本題考查了矩形的性質(zhì),勾股定理,相似三角形對應(yīng)邊成比例的性質(zhì),根據(jù)相似三角形對應(yīng)邊成比例列出比例式是解題的關(guān)鍵.10、A【解題分析】
側(cè)面為長方形,底面為三角形,故原幾何體為三棱柱.【題目詳解】解:觀察圖形可知,這個幾何體是三棱柱.故本題選擇A.【題目點撥】會觀察圖形的特征,依據(jù)側(cè)面和底面的圖形確定該幾何體是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【題目詳解】∵在0.、、、這四個實數(shù)種,有理數(shù)有0.、、這3個,∴抽到有理數(shù)的概率為,故答案為.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.12、x≤1【解題分析】分析:分別求出不等式組中兩個不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點睛:本題主要考查了解一元一次不等式組.13、且.【解題分析】
方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【題目詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.14、x≤2且x≠1【解題分析】
根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【題目詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【題目點撥】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).15、2【解題分析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【題目詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【題目點撥】本題考查的知識點是圓的性質(zhì),解題的關(guān)鍵是熟練的掌握圓的性質(zhì).16、【解題分析】
先求出扇形弧長,再求出圓錐的底面半徑,再根據(jù)勾股定理即可出圓錐的高.【題目詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【題目點撥】此題主要考查圓的弧長及圓錐的底面半徑,解題的關(guān)鍵是熟知圓的相關(guān)公式.17、1【解題分析】試題分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考點:全等三角形的性質(zhì);勾股定理三、解答題(共7小題,滿分69分)18、(1),;(2)當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>【解題分析】
(1)根據(jù)點A和點B的坐標求出一次函數(shù)的解析式,再求出C的坐標6,2),利用待定系數(shù)法求解即可求出解析式(2)由C(6,2)分析圖形可知,當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>【題目詳解】(1)S△AOB=OA?OB=1,∴OA=2,∴點A的坐標是(0,﹣2),∵B(1,0)∴∴∴y=x﹣2.當(dāng)x=6時,y=×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=.(2)由C(6,2),觀察圖象可知:當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>.【題目點撥】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于求出C的坐標19、【解題分析】試題分析:把相關(guān)的特殊三角形函數(shù)值代入進行計算即可.試題解析:原式=.20、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解題分析】
(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(1)根據(jù)含30°的直角三角形的性質(zhì)證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.【題目詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【題目點撥】本題考查了切線的判定,等腰三角形的性質(zhì),圓周角定理,扇形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.21、(2)見解析;(2)k<2.【解題分析】
(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得△=(k-2)2≥2,由此可證出方程總有兩個實數(shù)根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根據(jù)方程有一根小于2,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【題目詳解】(2)證明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,∴方程總有兩個實數(shù)根.(2)∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x=2,x=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范圍為k<2.【題目點撥】此題考查根的判別式,解題關(guān)鍵在于掌握運算公式.22、1千米/時【解題分析】
設(shè)水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【題目詳解】設(shè)水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【題目點撥】本題考查了一元一次方程的應(yīng)用,讀懂題意,找出等量關(guān)系,設(shè)出未知數(shù)后列出方程是解決此類題目的基本思路.23、(1);(2)20
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省太原市迎澤區(qū)太原實驗中學(xué)2025屆高三下學(xué)期期末調(diào)研生物試題含解析
- 中南林業(yè)科技大學(xué)《工業(yè)微生物育種實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆輕工職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)分析綜合實踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 鐵嶺衛(wèi)生職業(yè)學(xué)院《建筑制圖CAD》2023-2024學(xué)年第二學(xué)期期末試卷
- 長江工程職業(yè)技術(shù)學(xué)院《微生物遺傳與育種》2023-2024學(xué)年第二學(xué)期期末試卷
- 有機化學(xué)原料的環(huán)境友好合成策略考核試卷
- 電動機制造中的質(zhì)量改進循環(huán)考核試卷
- 游樂設(shè)施施工環(huán)境保護法律法規(guī)考核試卷
- 動物用藥店的市場營銷渠道整合與拓展策略考核試卷
- 電感器在電力系統(tǒng)有源濾波器中的應(yīng)用考核試卷
- 2024年初級藥師考試實效試題及答案
- 2024-2025學(xué)年蘇教版七年級生物下冊知識點復(fù)習(xí)提綱
- DB32-T 5082-2025 建筑工程消防施工質(zhì)量驗收標準
- 室速的觀察及護理
- 貴州貴州路橋集團有限公司招聘考試真題2024
- 新湘教版三年級美術(shù)下冊教案
- 急救中心擔(dān)架工考核管理辦法
- 自考中國近代史押題及答案
- 四川2025年03月四川省攀枝花市仁和區(qū)事業(yè)單位春季引進15名人才筆試歷年參考題庫考點剖析附解題思路及答案詳解
- 4月15日全民國家安全教育日主題宣傳教育課件
- 中小學(xué)無人機基礎(chǔ)知識
評論
0/150
提交評論