山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省泰安市寧陽縣重點(diǎn)名校2024屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若a與﹣3互為倒數(shù),則a=()A.3 B.﹣3 C.13 D.-2.的倒數(shù)是()A.﹣ B.2 C.﹣2 D.3.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對(duì)應(yīng)的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或64.如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為12,則PD+PE+PF=()A.12 B.8 C.4 D.35.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限6.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°7.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負(fù)數(shù)的概率是()A. B. C. D.8.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長(zhǎng)為()A. B.3cm C. D.9cm9.下列運(yùn)算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=510.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為直線x=,且經(jīng)過點(diǎn)(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④11.關(guān)于x的方程12x=kA.0或1212.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).對(duì)于一條直線,當(dāng)它與一個(gè)圓的公共點(diǎn)都是整點(diǎn)時(shí),我們把這條直線稱為這個(gè)圓的“整點(diǎn)直線”.已知⊙O是以原點(diǎn)為圓心,半徑為圓,則⊙O的“整點(diǎn)直線”共有()條A.7 B.8 C.9 D.10二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.14.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“*”:a*b=,例如:因?yàn)?>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.15.如圖,長(zhǎng)方形內(nèi)有兩個(gè)相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.16.若式子在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是.17.如圖,△ABC中,點(diǎn)D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長(zhǎng)是_____.18.已知關(guān)于X的一元二次方程有實(shí)數(shù)根,則m的取值范圍是____________________三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.(1)求反比例函數(shù)的解析式;(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).20.(6分)某社區(qū)活動(dòng)中心為鼓勵(lì)居民加強(qiáng)體育鍛煉,準(zhǔn)備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個(gè)羽毛球,供社區(qū)居民免費(fèi)借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標(biāo)價(jià)均為30元,每個(gè)羽毛球的標(biāo)價(jià)為3元,目前兩家超市同時(shí)在做促銷活動(dòng):A超市:所有商品均打九折(按標(biāo)價(jià)的90%)銷售;B超市:買一副羽毛球拍送2個(gè)羽毛球.設(shè)在A超市購買羽毛球拍和羽毛球的費(fèi)用為yA(元),在B超市購買羽毛球拍和羽毛球的費(fèi)用為yB(元).請(qǐng)解答下列問題:分別寫出yA、yB與x之間的關(guān)系式;若該活動(dòng)中心只在一家超市購買,你認(rèn)為在哪家超市購買更劃算?若每副球拍配15個(gè)羽毛球,請(qǐng)你幫助該活動(dòng)中心設(shè)計(jì)出最省錢的購買方案.21.(6分)孔明同學(xué)對(duì)本校學(xué)生會(huì)組織的“為貧困山區(qū)獻(xiàn)愛心”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形的高度之比為3:4:5:10:8,又知此次調(diào)查中捐款30元的學(xué)生一共16人.孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;若該校有2000名學(xué)生,都進(jìn)行了捐款,估計(jì)全校學(xué)生共捐款多少元?22.(8分)某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為,圖①中m的值為;求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).23.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,連接OA,且OA=OB.(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;(2)過點(diǎn)P(k,0)作平行于y軸的直線,交一次函數(shù)y=2x+n于點(diǎn)M,交反比例函數(shù)的圖象于點(diǎn)N,若NM=NP,求n的值.24.(10分)如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng).25.(10分)如圖二次函數(shù)的圖象與軸交于點(diǎn)和兩點(diǎn),與軸交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象經(jīng)過、求二次函數(shù)的解析式;寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;若直線與軸的交點(diǎn)為點(diǎn),連結(jié)、,求的面積;26.(12分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時(shí),求⊙O的面積.27.(12分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】試題分析:根據(jù)乘積是1的兩個(gè)數(shù)互為倒數(shù),可得3a=1,∴a=13故選C.考點(diǎn):倒數(shù).2、B【解題分析】

根據(jù)乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)解答.【題目詳解】解:∵×1=1∴的倒數(shù)是1.故選B.【題目點(diǎn)撥】本題考查了倒數(shù)的定義,是基礎(chǔ)題,熟記概念是解題的關(guān)鍵.3、B【解題分析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當(dāng)h<2時(shí),根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當(dāng)2≤h≤5時(shí),由此時(shí)函數(shù)的最大值為0與題意不符,可得出該情況不存在;當(dāng)h>5時(shí),根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當(dāng)h<2時(shí),有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當(dāng)2≤h≤5時(shí),y=-(x-h)2的最大值為0,不符合題意;當(dāng)h>5時(shí),有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點(diǎn)睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.4、C【解題分析】

過點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【題目詳解】延長(zhǎng)EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長(zhǎng)為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【題目點(diǎn)撥】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,且都等于60°.5、D【解題分析】

根據(jù)k,b的取值范圍確定圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,從而求解.【題目詳解】∵kb<0,∴k、b異號(hào)。①當(dāng)k>0時(shí),b<0,此時(shí)一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當(dāng)k<0時(shí),b>0,此時(shí)一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當(dāng)kb<0時(shí),一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【題目點(diǎn)撥】此題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于判斷圖象的位置關(guān)系6、C【解題分析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).7、B【解題分析】試題分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負(fù)數(shù)的概率是.故選B.考點(diǎn):概率.8、B【解題分析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點(diǎn)E,∴,解得CE=cm,CD=3cm.故選B.考點(diǎn):1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.9、B【解題分析】

利用合并同類項(xiàng)對(duì)A進(jìn)行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對(duì)B進(jìn)行判斷;根據(jù)同底數(shù)冪的乘法法則對(duì)C進(jìn)行判斷;利用完全平方公式對(duì)D進(jìn)行判斷.【題目詳解】解:A、a2與a3不能合并,所以A選項(xiàng)錯(cuò)誤;B、原式=a6÷a6=1,所以A選項(xiàng)正確;C、原式=a5,所以C選項(xiàng)錯(cuò)誤;D、原式=2+26+3=5+26,所以D選項(xiàng)錯(cuò)誤.故選:B.【題目點(diǎn)撥】本題考查同底數(shù)冪的乘除、二次根式的混合運(yùn)算,:二次根式的混合運(yùn)算先把二次根式化為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.解題關(guān)鍵是在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.10、D【解題分析】

根據(jù)圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(jù)(-2,y1),(,y2)到對(duì)稱軸的距離即可判斷④.【題目詳解】∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對(duì)稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯(cuò)誤;∵,故④正確;故選D..【題目點(diǎn)撥】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系的應(yīng)用,題目比較典型,主要考查學(xué)生的理解能力和辨析能力.11、A【解題分析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當(dāng)整式方程無解時(shí),2k-1=0,k=12當(dāng)分式方程無解時(shí),①x=0時(shí),k無解,②x=-3時(shí),k=0,∴k=0或12故選A.12、D【解題分析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點(diǎn)為(2,2)、(2,-2),(-2,-2),(-2,2)這四個(gè)點(diǎn),經(jīng)過任意兩點(diǎn)的“整點(diǎn)直線”有6條,經(jīng)過其中的任意一點(diǎn)且圓相切的“整點(diǎn)直線”有4條,則合計(jì)共有10條.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、50°【解題分析】

先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【題目詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【題目點(diǎn)撥】考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運(yùn)用三角形外角的性質(zhì)(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和).14、-1.【解題分析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.15、1-1【解題分析】

設(shè)兩個(gè)正方形的邊長(zhǎng)是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【題目詳解】設(shè)兩個(gè)正方形的邊長(zhǎng)是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【題目點(diǎn)撥】本題考查了二次根式的應(yīng)用,主要考查學(xué)生的計(jì)算能力.16、.【解題分析】

根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)的條件,要使在實(shí)數(shù)范圍內(nèi)有意義,必須.故答案為17、【解題分析】

由△ABC中,點(diǎn)D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【題目詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【題目點(diǎn)撥】考查了平行線分線段成比例定理,解題時(shí)注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長(zhǎng)線)相交的直線,所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例.18、m≤3且m≠2【解題分析】試題解析:∵一元二次方程有實(shí)數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)點(diǎn)P的坐標(biāo)是(0,4)或(0,-4).【解題分析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標(biāo).【題目詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標(biāo)代入得:k=4,∴反比例函數(shù)的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點(diǎn)P的坐標(biāo)是(0,4)或(0,-4).20、解:(1)yA=27x+270,yB=30x+240;(2)當(dāng)2≤x<10時(shí),到B超市購買劃算,當(dāng)x=10時(shí),兩家超市一樣劃算,當(dāng)x>10時(shí)在A超市購買劃算;(3)先選擇B超市購買10副羽毛球拍,然后在A超市購買130個(gè)羽毛球.【解題分析】

(1)根據(jù)購買費(fèi)用=單價(jià)×數(shù)量建立關(guān)系就可以表示出yA、yB的解析式;(2)分三種情況進(jìn)行討論,當(dāng)yA=yB時(shí),當(dāng)yA>yB時(shí),當(dāng)yA<yB時(shí),分別求出購買劃算的方案;(3)分兩種情況進(jìn)行討論計(jì)算求出需要的費(fèi)用,再進(jìn)行比較就可以求出結(jié)論.【題目詳解】解:(1)由題意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)當(dāng)yA=yB時(shí),27x+270=30x+240,得x=10;當(dāng)yA>yB時(shí),27x+270>30x+240,得x<10;當(dāng)yA<yB時(shí),27x+270<30x+240,得x>10∴當(dāng)2≤x<10時(shí),到B超市購買劃算,當(dāng)x=10時(shí),兩家超市一樣劃算,當(dāng)x>10時(shí)在A超市購買劃算.(3)由題意知x=15,15>10,∴選擇A超市,yA=27×15+270=675(元),先選擇B超市購買10副羽毛球拍,送20個(gè)羽毛球,然后在A超市購買剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要費(fèi)用10×30+351=651(元).∵651元<675元,∴最佳方案是先選擇B超市購買10副羽毛球拍,然后在A超市購買130個(gè)羽毛球.【題目點(diǎn)撥】本題考查一次函數(shù)的應(yīng)用,根據(jù)題意確列出函數(shù)關(guān)系式是本題的解題關(guān)鍵.21、(1)60;(2)20,20;(3)38000【解題分析】

(1)利用從左到右各長(zhǎng)方形高度之比為3:4:5:10:8,可設(shè)捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則根據(jù)題意得8x=1,解得x=2,然后計(jì)算3x+4x+5x++10x+8x即可;(2)先確定各組的人數(shù),然后根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)先計(jì)算出樣本的加權(quán)平均數(shù),然后利用樣本平均數(shù)估計(jì)總體,用2000乘以樣本平均數(shù)即可.【題目詳解】(1)設(shè)捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人數(shù)分別為6,8,10,20,1.∵20出現(xiàn)次數(shù)最多,∴眾數(shù)為20元;∵共有60個(gè)數(shù)據(jù),第30個(gè)和第31個(gè)數(shù)據(jù)落在第四組內(nèi),∴中位數(shù)為20元;(3)2000=38000(元),∴估算全校學(xué)生共捐款38000元.【題目點(diǎn)撥】本題考查了條形統(tǒng)計(jì)圖:條形統(tǒng)計(jì)圖是用線段長(zhǎng)度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長(zhǎng)短不同的矩形直條,然后按順序把這些直條排列起來.也考查了樣本估計(jì)總體、中位數(shù)與眾數(shù).22、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解題分析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計(jì)圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【題目詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計(jì)圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【題目點(diǎn)撥】本題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.23、20(1)y=2x-5,y=;(2)n=-4或n=1【解題分析】

(1)由點(diǎn)A坐標(biāo)知OA=OB=5,可得點(diǎn)B的坐標(biāo),由A點(diǎn)坐標(biāo)可得反比例函數(shù)解析式,由A、B兩點(diǎn)坐標(biāo)可得直線AB的解析式;

(2)由k=2知N(2,6),根據(jù)NP=NM得點(diǎn)M坐標(biāo)為(2,0)或(2,12),分別代入y=2x-n可得答案.【題目詳解】解:(1)∵點(diǎn)A的坐標(biāo)為(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵點(diǎn)B在y軸的負(fù)半軸上,

∴點(diǎn)B的坐標(biāo)為(0,-5),

將點(diǎn)A(4,3)代入反比例函數(shù)解析式y(tǒng)=中,

∴反比例函數(shù)解析式為y=,

將點(diǎn)A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函數(shù)解析式為y=2x-5;

(2)由(1)知k=2,

則點(diǎn)N的坐標(biāo)為(2,6),

∵NP=NM,

∴點(diǎn)M坐標(biāo)為(2,0)或(2,12),

分別代入y=2x-n可得:n=-4或n=1.【題目點(diǎn)撥】本題主要考查直線和雙曲線的交點(diǎn)問題,解題的關(guān)鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及分類討論思想的運(yùn)用.24、(1)(2)作圖見解析;(3).【解題分析】

(1)利用平移的性質(zhì)畫圖,即對(duì)應(yīng)點(diǎn)都移動(dòng)相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對(duì)應(yīng)點(diǎn)都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長(zhǎng)公式求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng).【題目詳解】解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線且A1C1=AC,同理找到點(diǎn)B1,分別連接三點(diǎn),△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點(diǎn)B所走的路徑總長(zhǎng)=.考點(diǎn):1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長(zhǎng)的計(jì)算.25、(1);(2)或;(3)1.【解題分析】

(1)直接將已知點(diǎn)代入函數(shù)解析式求出即可;(2)利用函數(shù)圖象結(jié)合交點(diǎn)坐標(biāo)得出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;(3)分別得出EO,AB的長(zhǎng),進(jìn)而得出面積.【題目詳解】(1)∵二次函數(shù)與軸的交點(diǎn)為和∴設(shè)二次函數(shù)的解析式為:∵在拋物線上,∴3=a(0+3)(0-1),解得a=-1,所以解析式為:;(2)=?x2?2x+3,∴二次函數(shù)的對(duì)稱軸為直線;∵點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn);∴;∴使一次函數(shù)大于二次函數(shù)的的取值范圍為或;(3)設(shè)直線BD:y=mx+n,代入B(1,0),D(?2,3)得,解得:,故直線BD的解析式為:y=?x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3?×1×1=1.【題目點(diǎn)撥】此題主要考查了待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式,利用數(shù)形結(jié)合得出是解題關(guān)鍵.26、(1)證明見解析;(2)2516【解題分析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對(duì)內(nèi)錯(cuò)角相等,再由OA=OD,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到AD為角平分線,利用相等的圓周角所對(duì)的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長(zhǎng),利用勾股定理求出AD的長(zhǎng),由(1)得出的兩個(gè)圓周角相等,及一對(duì)直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長(zhǎng),進(jìn)而求出圓的半徑,即可求出圓的面積.【題目詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【題目點(diǎn)撥】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.27、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解題分析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【題目詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論