考研數(shù)學(xué) 概率論與數(shù)理統(tǒng)計復(fù)習(xí)指導(dǎo)-2_第1頁
考研數(shù)學(xué) 概率論與數(shù)理統(tǒng)計復(fù)習(xí)指導(dǎo)-2_第2頁
考研數(shù)學(xué) 概率論與數(shù)理統(tǒng)計復(fù)習(xí)指導(dǎo)-2_第3頁
考研數(shù)學(xué) 概率論與數(shù)理統(tǒng)計復(fù)習(xí)指導(dǎo)-2_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

凱程考研集訓(xùn)營,為學(xué)生引路,為學(xué)員服務(wù)! 考研數(shù)學(xué):概率論與數(shù)理統(tǒng)計復(fù)習(xí)指導(dǎo)概率論與數(shù)理統(tǒng)計一直以來都是全國碩士研究生考試數(shù)學(xué)考試中的重要部分。從研究必然問題到處理隨機(jī)問題,不僅讓很多的考生都覺得很困難,對于很多曾經(jīng)學(xué)過概率論與數(shù)理統(tǒng)計考生也是問題重重,特別是在做習(xí)題以及解決實際應(yīng)用方面遇到的困難會更多一些。在這里為大家在這個方面做些總結(jié):一、幾何型概率及概率數(shù)理統(tǒng)計的復(fù)習(xí)幾何型概率原則上只有理工科考,是數(shù)學(xué)一考察的對象,最近兩年經(jīng)濟(jì)類的大綱也加進(jìn)來了,但還沒有考過,數(shù)學(xué)三雖然明確寫在大綱里,還沒有考。幾何概率是一個考點,但不是一個考察的重點。它考的可能性很小,如果考也是考一個小題,或者是選擇題或者是填空題或者在大題里運用一下概率的模式,就是一個事件發(fā)生的概率是等于這個事件的度量或者整個樣本空間度量的比。這個度量的話指的是面積,一維空間指的是長度,二維空間指的是面積,三維空間指的是體積。所以幾何概率指的是長度的比、面積的比和體積的比。重點是面積的比,是二維的情況。幾何概率其實很簡單,是一個程序化的過程,按這四個步驟你肯定能做出來。第一步把樣本空間和讓你求概率的事件用幾何表示出來。第二步既然是幾何概率那就是圖形,第二步把幾何圖形畫出來。第三步你就把樣本空間和讓你求概率的事件所在的幾何圖形的度量,就是剛才所說的面積或者體積求出來。第三步代公式。以前考過的幾何概率的題度量的計算都是用初等的方法做。二、數(shù)理統(tǒng)計考試重點及參數(shù)估計比重參數(shù)估計這部分它占數(shù)理統(tǒng)計的一多半內(nèi)容,參數(shù)估計這塊應(yīng)該是最重要的。統(tǒng)計里面第一章就是關(guān)于樣本還有統(tǒng)計量分布這部分,這部分就是求統(tǒng)計量的數(shù)字特征,統(tǒng)計量是隨機(jī)變量。統(tǒng)計里面有什么題型,一個參數(shù)估計,一個求統(tǒng)計量數(shù)字特征或者求統(tǒng)計量的分布,統(tǒng)計量是隨機(jī)變量,任何隨機(jī)變量都有分布。自然會有這樣的題型。求統(tǒng)計量的數(shù)字特征,求統(tǒng)計量的分布,然后參數(shù)估計,然后估計的標(biāo)準(zhǔn)。統(tǒng)計這個內(nèi)容對大家來說應(yīng)該是比較好掌握的,題型比較少,你比較好把這個題做好。三、概率問題的重點及得分方法隨機(jī)變量分布這是一大塊內(nèi)容,基本每都年考一點,還有一個就是數(shù)理特征和數(shù)理統(tǒng)計基本考一個大題,概率和數(shù)理統(tǒng)計這部分如果從復(fù)習(xí)角度來看我們首先要理解概念,我認(rèn)為這里面有三個典型途徑:第一古典概率,一個概率的公式的推算,第二個途徑就是利用我們的分布信息來求概率,我們涉及到一維的也可以是二維的,即可以是離散型的也可以是連續(xù)型的,都有求概率的方法,我們討論概率統(tǒng)計里的問題,比如分布函數(shù)問題,本身就是求概率,你只要知道求概率統(tǒng)計三個途徑,所以我討論分布函數(shù),由分布函數(shù)可以討論概率分布函數(shù),源頭是分布函數(shù),分布函數(shù)基礎(chǔ)是求概率,通過這個角度把握我認(rèn)為概率統(tǒng)計發(fā)現(xiàn)不是你想象的那么復(fù)雜了。這里面重點的是二兩者,第一種古典概率考的是排列組合,這個是初中內(nèi)容,稍微難一點古典概率的題,同學(xué)沒有過多關(guān)心,不會從這個角度考的,而是根據(jù)我剛才的分析。所以把握這種思路以后,實際上概率統(tǒng)計知識應(yīng)該把線性代數(shù),特別比高等數(shù)學(xué)更好拿分。另外稍微應(yīng)該注意一下概率統(tǒng)計里面隨機(jī)事件和隨機(jī)變量之間的轉(zhuǎn)換關(guān)系。我們可以通過隨機(jī)事件引進(jìn)隨機(jī)變量,反過來也可以,所以大家復(fù)習(xí)時候。討論隨機(jī)事件之間關(guān)系問題也可以借用隨機(jī)變量之間關(guān)系分析,這是概率統(tǒng)計方面大家應(yīng)該注意幾個比較典型的知識點。四、結(jié)合實際例子記憶概率公式概率的公式并不多,背下來是基本的要求,但是概率的公式和高等數(shù)學(xué)的公式相比,僅僅記住它是不夠的,比如給一個函數(shù)求導(dǎo)數(shù),你會做,因為你知道是求導(dǎo)數(shù),概率問題,比如全概率公式,考試的時候從來沒有哪一年是請你用全概率公式求求某概率,所以從分析問題的層面來說概率的要求高一點,但是從計算技巧來說概率的技巧低一些,所以我建議大家結(jié)合實際的例子和模型記它。比如二向概率公式,你可以這么記它,記一個模型,把一枚硬幣重復(fù)拋N次,正面沖上的概率是多少呢?這個公式哪一個符號在實際問題里面是什么東西,這樣才是在理解的基礎(chǔ)上記憶,當(dāng)然就不容易忘記了。五、做題時要理解題意我們看這樣一個模型,這是概率里經(jīng)常見到的,從實際產(chǎn)品里面我們每次取一個產(chǎn)品,而且取后不放回去,就是日常生活中抽簽抓鬮的模型?,F(xiàn)在我說四句話,大家看看有什么不同,第一句話“求一下第三次取到十件產(chǎn)品有七件正品三件次品,我們每次取一件,取后不放回”,下面我們來求四個類型,第一問我們求第三次取得次品的概率。第二問我們求第三次才取得次品的概率。第三問已知前兩次沒有取得次品第三次取到次品。第四問不超過三次取到次品。大家看到這四問的話我想是容易糊涂的,這是四個完全不同的概率,但是你看完以后可能有很多考生認(rèn)為有的就是一個類型,但實際上是不一樣的。先看第一個“第三次取得次品”,這個概率與前面取得什么和后面取得什么都沒有關(guān)系,所以這個我們叫絕對概率。第一個概率我想很多考生都知道,這個概率應(yīng)該是等于十分之三,用古代概率公式或者全概率公式求出來都是十分之三。這個概率改成第四次、第五次取到都是十分之三,就是說這個概率與次數(shù)是沒有關(guān)系的。所以在這里我們可以看出,日常生活中抽簽、抓鬮從數(shù)學(xué)上來說是公平的。拿這個模型來說,第一次取到和第十次取到次品的概率都是十分之三。下面我們再看看第二個概率,第三次才取到次品的概率,這個事件描述的是績事件,這是概率里重要的概念,改變表示同時發(fā)生的概率。但是這個與第三次的概率是容易混淆的,如果表示的可以這樣表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC績事件發(fā)生的概率。第三問表示條件概率,已知前兩次沒有取到次品,第三次取到次品P(C|AB),第三問求的就是一個條件概率。我們看第四問,不超過三次取得次品,這是一個和事件的概率,就是P(A+B+C)。從這個例子大家可以看出,概率論確實對題意的理解非常重要,要把握準(zhǔn)確,否則就得不到準(zhǔn)確的答案。

小提示:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論