版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西貴港市覃塘三中學2024屆中考考前最后一卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值2.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡上推出,即刻轉發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1043.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(
)A.35° B.45° C.55° D.65°4.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.95.實數(shù)a,b在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a(chǎn)>﹣2 B.a(chǎn)<﹣3 C.a(chǎn)>﹣b D.a(chǎn)<﹣b6.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣37.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=28.據(jù)財政部網(wǎng)站消息,2018年中央財政困難群眾救濟補助預算指標約為929億元,數(shù)據(jù)929億元科學記數(shù)法表示為()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×10119.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×10510.一個正多邊形的內角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.6二、填空題(共7小題,每小題3分,滿分21分)11.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)12.計算:2tan13.如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=_____14.在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有_____個.15.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是______.16.某學校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設購買A型電腦x臺,購買B型電腦y臺,則根據(jù)題意可列方程組為______.17.觀察圖形,根據(jù)圖形面積的關系,不需要連其他的線,便可以得到一個用來分解因式的公式,這個公式是________________三、解答題(共7小題,滿分69分)18.(10分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)B點坐標為,并求拋物線的解析式;(2)求線段PC長的最大值;(3)若△PAC為直角三角形,直接寫出此時點P的坐標.19.(5分)(1)如圖1,在矩形ABCD中,點O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).20.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.21.(10分)隨著互聯(lián)網(wǎng)的發(fā)展,同學們的學習習慣也有了改變,一些同學在做題遇到困難時,喜歡上網(wǎng)查找答案.針對這個問題,某校調查了部分學生對這種做法的意見(分為:贊成、無所謂、反對),并將調查結果繪制成圖1和圖2兩個不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調查中,共調查了多少名學生?將圖1補充完整;求出扇形統(tǒng)計圖中持“反對”意見的學生所在扇形的圓心角的度數(shù);根據(jù)抽樣調查結果,請你估計該校1500名學生中有多少名學生持“無所謂”意見.22.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.23.(12分)如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.24.(14分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經(jīng)過市場調查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數(shù)關系式,并求當x取何值時,商場獲利潤最大?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.2、B【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】810000=8.1×1.
故選B.【題目點撥】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、C【解題分析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.4、D【解題分析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.5、D【解題分析】試題分析:A.如圖所示:﹣3<a<﹣2,故此選項錯誤;B.如圖所示:﹣3<a<﹣2,故此選項錯誤;C.如圖所示:1<b<2,則﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此選項錯誤;D.由選項C可得,此選項正確.故選D.考點:實數(shù)與數(shù)軸6、B【解題分析】
先變形,再整體代入,即可求出答案.【題目詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【題目點撥】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.7、C【解題分析】試題解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.8、B【解題分析】
科學記數(shù)法的表示形式為a×1n的形式,其中1≤|a|<1,n為整數(shù).確定n的值是易錯點,由于929億有11位,所以可以確定n=11-1=1.【題目詳解】解:929億=92900000000=9.29×11.故選B.【題目點撥】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.9、B【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學記數(shù)法表示為5.5×104,故選B.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、B【解題分析】
n邊形的內角和可以表示成(n-2)?180°,設這個多邊形的邊數(shù)是n,就得到關于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【題目詳解】設這個正多邊形的邊數(shù)是n,則
(n-2)?180°=900°,
解得:n=1.
則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【題目點撥】本題考核知識點:多邊形的內角和.解題關鍵點:熟記多邊形內角和公式.二、填空題(共7小題,每小題3分,滿分21分)11、①②④【解題分析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【題目詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【題目點撥】考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.12、3+3【解題分析】
本題涉及零指數(shù)冪、負指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.【題目詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【題目點撥】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點的運算13、.【解題分析】
解:令AE=4x,BE=3x,∴AB=7x.∵四邊形ABCD為平行四邊形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【題目點撥】本題考查平行四邊形的性質及相似三角形的判定與性質,掌握定理正確推理論證是本題的解題關鍵.14、1【解題分析】試題解析:在兩人出發(fā)后0.5小時之前,甲的速度小于乙的速度,0.5小時到1小時之間,甲的速度大于乙的速度,故①錯誤;由圖可得,兩人在1小時時相遇,行程均為10km,故②正確;甲的圖象的解析式為y=10x,乙AB段圖象的解析式為y=4x+6,因此出發(fā)1.5小時后,甲的路程為15千米,乙的路程為12千米,甲的行程比乙多3千米,故③正確;甲到達終點所用的時間較少,因此甲比乙先到達終點,故④正確.15、1【解題分析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.則第8個數(shù)為13+8=21;第9個數(shù)為21+13=34;第10個數(shù)為34+21=1.故答案為1.點睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數(shù)據(jù)等認真進行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.16、【解題分析】試題解析:根據(jù)題意得:故答案為17、【解題分析】由圖形可得:三、解答題(共7小題,滿分69分)18、(1)(4,6);y=1x1﹣8x+6(1);(3)點P的坐標為(3,5)或().【解題分析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.(1)要弄清PC的長,實際是直線AB與拋物線函數(shù)值的差.可設出P點橫坐標,根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關于PC與P點橫坐標的函數(shù)關系式,根據(jù)函數(shù)的性質即可求出PC的最大值.(3)根據(jù)頂點問題分情況討論,若點P為直角頂點,此圖形不存在,若點A為直角頂點,根據(jù)已知解析式與點坐標,可求出未知解析式,再聯(lián)立拋物線的解析式,可求得C點的坐標;若點C為直角頂點,可根據(jù)點的對稱性求出結論.【題目詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設動點P的坐標為(n,n+1),則C點的坐標為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=1x1﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當x=3時,y=x+1=5,∴P1(3,5);iii)若點C為直角頂點,則∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴拋物線的對稱軸為直線x=1.如圖1,作點A(,)關于對稱軸x=1的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+1=.∴P1(,).∵點P1(3,5)、P1(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時,點P的坐標為(3,5)或(,).【題目點撥】本題考查了二次函數(shù)的綜合題,解題的關鍵是熟練的掌握二次函數(shù)的應用.19、(1)證明見解析;(2)25°.【解題分析】試題分析:(1)根據(jù)等量代換可求得∠AOD=∠BOC,根據(jù)矩形的對邊相等,每個角都是直角,可知∠A=∠B=90°,AD=BC,根據(jù)三角形全等的判定AAS證得△AOD≌△BOC,從而得證結論.(2)利用切線的性質和直角三角形的兩個銳角互余的性質得到圓心角∠POA的度數(shù),然后利用圓周角定理來求∠ABC的度數(shù).試題解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四邊形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直徑,PA與相切于點A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.20、(1)50;(2)16;(3)56(4)見解析【解題分析】
(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;
(2)用總人數(shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數(shù);
(4)畫樹狀圖展示12種等可能的結果數(shù),再找出抽取的兩人恰好都是男生的結果數(shù),然后根據(jù)概率公式求解.【題目詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:
共有12種等可能的結果數(shù),其中抽取的兩人恰好都是男生的結果數(shù)為2,
所以抽取的兩人恰好都是男生的概率=.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.21、200名;見解析;;(4)375.【解題分析】
根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得此次抽樣調查中,共調查了多少名學生;
根據(jù)中的結果和統(tǒng)計圖中的數(shù)據(jù)可以求得反對的人數(shù),從而可以將條形統(tǒng)計圖補充完整;
根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得扇形統(tǒng)計圖中持“反對”意見的學生所在扇形的圓心角的度數(shù);
根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以估計該校1500名學生中有多少名學生持“無所謂”意見.【題目詳解】解:,
答:此次抽樣調查中,共調查了200名學生;
反對的人數(shù)為:,
補全的條形統(tǒng)計圖如右圖所示;
扇形統(tǒng)計圖中持“反對”意見的學生所在扇形的圓心角的度數(shù)是:;
(4),答:該校1500名學生中有375名學生持“無所謂”意見.【題目點撥】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.22、(1)證明見解析;(2)CE=1.【解題分析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【題目詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【題目點撥】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024城市基礎設施建設項目特許經(jīng)營權協(xié)議
- 2024年幼兒園教師崗位聘任協(xié)議書模板
- 2024專業(yè)建設工程項目設計合同范本專業(yè)版
- 2024家庭保姆雇傭合同樣本
- 2024年先進制造業(yè)生產(chǎn)線自動化改造合同
- 2024年度家電行業(yè)C型鋼部件加工合同
- 2024年廢紙回收海運出口協(xié)議
- 2024年商場清潔服務合同
- 2024年建筑工程設計與施工一體化合同
- 2024年度智能硬件設備采購與安裝合同
- 如何有效應對學習中的困難和挑戰(zhàn)
- 醫(yī)院感染管理培訓課件消毒劑的選擇與使用
- 平臺分銷返傭合作協(xié)議
- 中國城市行政代碼
- 低纖維蛋白原血癥的護理查房
- 數(shù)學4教材介紹
- 全國大學生職業(yè)生涯規(guī)劃大賽
- 肩關節(jié)鏡術的健康宣教
- 關于學校安全保衛(wèi)工作存在的問題及對策
- 2024年廣西鋁業(yè)集團有限公司招聘筆試參考題庫附帶答案詳解
- 2024年西藏開發(fā)投資集團有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論