吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷含解析_第1頁
吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷含解析_第2頁
吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷含解析_第3頁
吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷含解析_第4頁
吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省松原市前郭爾羅斯蒙古族自治縣重點達標名校2024屆中考數(shù)學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.|–|的倒數(shù)是()A.–2 B.– C. D.22.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°3.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.14.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°5.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設(shè)道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5706.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數(shù)的統(tǒng)計結(jié)果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學分析上表后得出如下結(jié)論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結(jié)論中,正確的是()A.①② B.②③ C.①③ D.①②③7.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm8.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1079.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.410.函數(shù)在同一直角坐標系內(nèi)的圖象大致是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.對于實數(shù)a,b,我們定義符號max{a,b}的意義為:當a≥b時,max{a,b}=a;當a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是_____.12.計算的結(jié)果是____.13.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.14.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)15.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉(zhuǎn)α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.16.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤三、解答題(共8題,共72分)17.(8分)如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最??;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結(jié)果)18.(8分)在平面直角坐標系xOy中,點M的坐標為,點N的坐標為,且,,我們規(guī)定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.(1)已知點A的坐標為,①若點B的坐標為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標;②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達式.(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.19.(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.20.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結(jié)束,且速度均為1cm/s,設(shè)運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?21.(8分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.22.(10分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.23.(12分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結(jié).(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結(jié)CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.24.(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據(jù)絕對值的性質(zhì),可化簡絕對值,根據(jù)倒數(shù)的意義,可得答案.【題目詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【題目點撥】本題考查了實數(shù)的性質(zhì),分子分母交換位置是求一個數(shù)倒數(shù)的關(guān)鍵.2、D【解題分析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【題目詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【題目點撥】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.3、A【解題分析】

首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應(yīng)邊成比例即可求得BF的值.【題目詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【題目點撥】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識.解此題的關(guān)鍵是準確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.4、B【解題分析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【題目點撥】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.5、A【解題分析】六塊矩形空地正好能拼成一個矩形,設(shè)道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.6、D【解題分析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7、C【解題分析】

根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【題目詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【題目點撥】本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運用三角形三邊關(guān)系.8、A【解題分析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).9、B【解題分析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤?!弋攛=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個,故選B。10、C【解題分析】

根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【題目詳解】當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經(jīng)過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解題分析】試題分析:當x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當x=﹣1時,ymin=2,當x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,12、【解題分析】原式=,故答案為.13、(1,0)【解題分析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關(guān)于x軸的對稱點D′,當點E在線段CD′上時的周長最小.詳解:如圖,作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關(guān)鍵.14、-1【解題分析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點:一次函數(shù)圖象與系數(shù)的關(guān)系15、【解題分析】

∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉(zhuǎn)的性質(zhì)可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【題目點撥】錯因分析

中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉(zhuǎn)化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.16、②③.【解題分析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).三、解答題(共8題,共72分)17、(1)詳見解析;(2)①詳見解析;②.【解題分析】

(1)根據(jù)軸對稱的性質(zhì),可作出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)①作點B關(guān)于直線m的對稱點B'',連接B''A與x軸的交點為點P;

②由△ABP的周長=AB+AP+BP=AB+AP+B''P,則當AP與PB''共線時,△APB的周長有最小值.【題目詳解】解:(1)如圖△A′B′C′為所求圖形.(2)①如圖:點P為所求點.②∵△ABP的周長=AB+AP+BP=AB+AP+B''P∴當AP與PB''共線時,△APB的周長有最小值.∴△APB的周長的最小值A(chǔ)B+AB''=+3故答案為+3【題目點撥】本題考查軸對稱變換,勾股定理,最短路徑問題,解題關(guān)鍵是熟練掌握軸對稱的性質(zhì).18、(1)①點C坐標為或;②y=x+2或y=-x+3;(2)或【解題分析】

(1)①根據(jù)“和諧點”的定義即可解決問題;②首先求出點C坐標,再利用待定系數(shù)法即可解決問題;(2)分兩種情形畫出圖形即可解決問題.【題目詳解】(1)①如圖1.觀察圖象可知滿足條件的點C坐標為C(1,5)或C'(3,5);②如圖2.由圖可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC為等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).設(shè)直線AC的表達式為y=kx+b(k≠0),當C1(5,7)時,,∴,∴y=x+2,當C2(5,﹣1)時,,∴,∴y=﹣x+3.綜上所述:直線AC的表達式是y=x+2或y=﹣x+3.(2)分兩種情況討論:①當點F在點E左側(cè)時:連接OD.則OD=,∴.②當點F在點E右側(cè)時:連接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.綜上所述:或.【題目點撥】本題考查了一次函數(shù)綜合題、圓的有關(guān)知識、等腰直角三角形的判定和性質(zhì)、“和諧點”的定義等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的首先思考問題,屬于中考壓軸題.19、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解題分析】

(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【題目詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握各自的性質(zhì)是解題的關(guān)鍵.20、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解題分析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【題目詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【題目點撥】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會構(gòu)建二次函數(shù)解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.21、﹣2【解題分析】【分析】先利用完全平方公式、平方差公式進行展開,然后合并同類項,最后代入x、y的值進行計算即可得.【題目詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當x=+1,y=﹣1時,原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【題目點撥】本題考查了整式的混合運算——化簡求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.22、(1)不可能;(2).【解題分析】

(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計算.【題目詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.23、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解題分析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論