版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省桐鄉(xiāng)市實驗中學2024屆中考數(shù)學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°2.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°3.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°4.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD5.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近6.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.7.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m8.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形9.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.10.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=______°.12.在函數(shù)中,自變量x的取值范圍是_________.13.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.14.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發(fā),沿B-C-D向終點D勻速運動,設(shè)點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數(shù)關(guān)系的圖象是()A. B. C. D.15.若代數(shù)式在實數(shù)范圍內(nèi)有意義,則實數(shù)x的取值范圍為_____.16.在平面直角坐標系中,點A,B的坐標分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.17.函數(shù)中,自變量的取值范圍是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.19.(5分)關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.20.(8分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.21.(10分)如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.(1)求證:;(2)請?zhí)骄烤€段DE,CE的數(shù)量關(guān)系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.22.(10分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.23.(12分)某學校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?24.(14分)分式化簡:(a-)÷
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【題目詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【題目點撥】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.2、A【解題分析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質(zhì).3、B【解題分析】
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大小.【題目詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【題目點撥】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.4、D【解題分析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定5、D【解題分析】
根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【題目詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【題目點撥】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.6、C【解題分析】
設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【題目詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【題目點撥】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.7、B【解題分析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應邊成比例求出GH的長即BD的長即可.【題目詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【題目點撥】本題考查了相似三角形的應用,解題的關(guān)鍵是從實際問題中抽象出相似三角形.8、C【解題分析】
根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【題目詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質(zhì)9、B【解題分析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.10、D【解題分析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、220.【解題分析】試題分析:△ABC中,∠A=40°,=;如圖,剪去∠A后成四邊形∠1+∠2+=;∠1+∠2=220°考點:內(nèi)角和定理點評:本題考查三角形、四邊形的內(nèi)角和定理,掌握內(nèi)角和定理是解本題的關(guān)鍵12、x≤1且x≠﹣1【解題分析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.13、1【解題分析】
根據(jù)概率的公式進行計算即可.【題目詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【題目點撥】考查概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.14、C【解題分析】
分出情況當P點在BC上運動,與P點在CD上運動,得到關(guān)系,選出圖象即可【題目詳解】由題意可知,P從B開始出發(fā),沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數(shù)s=x圖像,后面為水平直線,故選C【題目點撥】本題主要考查實際問題與函數(shù)圖像,關(guān)鍵在于讀懂題意,弄清楚P的運動狀態(tài)15、x≤1【解題分析】
根據(jù)二次根式有意義的條件可求出x的取值范圍.【題目詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【題目點撥】本題考查二次根式有意義的條件,解題的關(guān)鍵是利用被開方數(shù)是非負數(shù)解答即可.16、﹣4≤m≤﹣1【解題分析】
先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當點B在點A的右側(cè),則m≤﹣4≤3m﹣1,當點B在點A的左側(cè),則3m﹣1≤﹣4≤m,然后分別解關(guān)于m的不等式組即可.【題目詳解】解:當y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當點B在點A的右側(cè),則m≤﹣4≤3m﹣1,無解;當點B在點A的左側(cè),則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【題目點撥】本題考查了一次函數(shù)圖象上點的坐標特征,根據(jù)直線y=﹣2x﹣1與線段AB有公共點找出關(guān)于m的一元一次不等式組是解題的關(guān)鍵.17、【解題分析】
根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【題目詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【題目點撥】本題主要考查自變量得取值范圍的知識點,當函數(shù)表達式是分式時,考慮分式的分母不能為2.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)【解題分析】
(1)連結(jié)OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據(jù)平行線的性質(zhì)得OD⊥CE,然后根據(jù)切線的判定定理得到結(jié)論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設(shè)BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【題目詳解】(1)證明:連結(jié)OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設(shè)BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.19、(1)且;(2),.【解題分析】
(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;
(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【題目詳解】(1)∵.解得且.(2)∵為正整數(shù),∴.∴原方程為.解得,.【題目點撥】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.20、(1)真;(2);(3)或或.【解題分析】
(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【題目詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結(jié)MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【題目點撥】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關(guān)鍵.21、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解題分析】試題分析:(1)證明△ABE∽△ACD,從而得出結(jié)論;(2)先證明∠CDE=∠ACD,從而得出結(jié)論;(3)解直角三角形示得.試題解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.22、(1)y=﹣x2+2x+1;(2)P(,);(1)當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【解題分析】
(1)先求得點B和點C的坐標,然后將點B和點C的坐標代入拋物線的解析式得到關(guān)于b、c的方程,從而可求得b、c的值;(2)作點O關(guān)于BC的對稱點O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點P的坐標;(1)先求得點D的坐標,然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【題目詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 著眼幼小銜接助力兒童成長幼小銜接培訓
- 掌握結(jié)構(gòu)化表達提升溝通效率
- 食材加工知識培訓課件
- 二零二五年度大數(shù)據(jù)分析與應用簡易技術(shù)服務合同范本2篇
- 2025年度酒店甲醛濃度達標治理合同范本3篇
- 二零二五年度建筑工程施工現(xiàn)場用電補充協(xié)議范本3篇
- 中學生寒假計劃安排
- 四川省眉山市仁壽縣2024-2025學年高二上學期期末考試歷史試題(含答案)
- 人教版九年級歷史與社會上冊說課稿:第一單元 第一課 世界的格局與第一次世界大戰(zhàn)
- Unit 3 Where did you go?PartC (說課稿)-2023-2024學年人教PEP版英語六年級下冊
- 政府采購評審專家考試試題庫(完整版)
- 合作投資酒店意向合同范例
- 安全教育教案大班40篇
- 叉車工安全培訓資料
- 九年級英語教學反思
- 外研新標準初中英語七年級上冊冊寒假提升補全對話短文練習三附答案解析
- 《旅游消費者行為學》-課程教學大綱
- YY/T 1117-2024石膏繃帶
- 蘇教版小學三年級科學上冊單元測試題附答案(全冊)
- 2024年人教版初一語文(上冊)期末試卷及答案(各版本)
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
評論
0/150
提交評論